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1  | INTRODUC TION

The programs CDPOP (Landguth & Cushman, 2010) and CDMetaPOP 
(Landguth, Holden, Mahalovich, & Cushman, 2017) are tools for in-
dividual-based simulation of mating, dispersal, and selection as func-
tions of user-specified landscape resistance and selection processes 
(see Box 1 for a detailed comparison of the two programs). A module 
introduced in 2012 (Landguth, Cushman, & Johnson, 2012) enabled 
CDPOP to model natural selection based on spatial environmental fit-
ness surfaces for one or two diallellic loci under directional selection 
(i.e., Gavrilets, 2004; Wright, 1932). That version of CDPOP required a 

spatial environmental fitness surface for each genotype in the one- or 
two-locus selection model. For example, in the single diallelic locus 
model, three relative fitness surfaces would be specified for the three 
genotypes (AA, Aa, and aa) from the two alleles, A and a, whereas nine 
surfaces would be required for the two-locus model. Selection in this 
module is implemented through differential survival of offspring as a 
function of the relative fitness of the offspring's genotype at the loca-
tion where the dispersing individual settled.

While these simple models of natural selection have provided 
an important baseline for understanding adaptive landscape genet-
ics, such as validation with theory (Landguth et al., 2012), comparing 
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Abstract
We implemented multilocus selection in a spatially-explicit, individual-based frame-
work that enables multivariate environmental gradients to drive selection in many 
loci as a new module for the landscape genetics programs, CDPOP and CDMetaPOP. 
Our module simulates multilocus selection using a linear additive model, providing 
a flexible platform to evaluate a wide range of genotype-environment associations. 
Importantly, the module allows simulation of selection in any number of loci under 
the influence of any number of environmental variables. We validated the module 
with individual-based selection simulations under Wright-Fisher assumptions. We 
then evaluated results for simulations under a simple landscape selection model. 
Next, we simulated individual-based multilocus selection across a complex selection 
landscape with three loci linked to three different environmental variables. Finally, 
we demonstrated how the program can be used to simulate multilocus selection 
under varying selection strengths across different levels of gene flow in a landscape 
genetics framework. This new module provides a valuable addition to the study of 
landscape genetics, allowing for explicit evaluation of the contributions and interac-
tions between gene flow and selection-driven processes across complex, multivari-
ate environmental and landscape conditions.
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methods for detecting genotype-environment associations (Forester 
et al., 2015; Jones et al., 2013), optimizing and informing conservation 
research (Creech et al., 2017; Landguth & Balkenhol, 2012; Landguth 
et al., 2017), and understanding the emergence of reproductive isola-
tion in landscapes (Cushman & Landguth, 2016; Landguth, Johnson, & 
Cushman, 2015), the module cannot model more than two loci under 
selection. More flexible models linked to theory are needed to better 
represent complex genetic variation in real systems. For example, adap-
tive traits often have a complex genetic basis that interacts with selec-
tion strength, gene flow, drift, and mutation rate (Yeaman & Whitlock, 
2011) in a multivariate environmental context; however, our ability to 
simulate these processes across many adaptive and neutral loci (e.g., 
hundreds to thousands) in a landscape genetic context has lagged.

Here, we incorporate multilocus selection into CDPOP using a 
linear additive model (Falconer & Mackay, 1996; Wade, Winther, & 
Goodnight, 2001), which enables the simulation of a broad range of 
genotype-environment associations. In the context of CDPOP, we 
define multilocus selection as multiple loci responding to univariate 
or multivariate environmental variables, impacting the local fitness 
of individuals with a given multilocus genotype. If selection is strong 
and is acting on a small set of loci with large effects, this could result 
in pronounced differences in allele frequencies across environments. 
However, if selection is distributed across a large number of loci, each 
with weak individual effects, multilocus selection will produce more 
subtle signals of allele frequency differentiation across environments 
(Le Corre & Kremer, 2003). These weaker signatures of selection, in-
dicative of processes such as selection on standing genetic variation, 
are common patterns of natural selection in real populations (Bay et 
al., 2017; Le Corre & Kremer, 2012; Messer & Petrov, 2013; Pritchard 
& Di Rienzo, 2010) and are primarily what we sought to simulate in 
this new module.

In this article, we first introduce the framework for flexible, multi-
variate, multilocus simulation. We then validate the individual-based 
simulations under Wright-Fisher assumptions and evaluate expected 
results for simulations under a simple single landscape multilocus 
selection model. We then implement two examples of more real-
istic multilocus selection across complex landscapes with multiple 
loci and alleles linked to multiple environmental gradients. Our first 
example shows how multiple environmental variables can influence 
multilocus variation, while keeping the genotype space relatively 
simplistic (three loci). The second example shows how a suite of loci 
under different selection strengths can be simulated with varying 
gene flow in a landscape genetics framework, while keeping the en-
vironmental space relatively simplistic (one gradient environment).

2  | MATERIAL S AND METHODS

2.1 | Simulation program

The spatial module of multilocus selection is built upon the exist-
ing framework of the individual-based landscape genetics program, 
CDPOP (Landguth & Cushman, 2010). CDPOP simulates genetic 

exchange and population dynamics for spatially referenced individu-
als on a resistance surface, where mating and dispersal events are 
a probabilistic function of effective or ecological distance between 
locations. As mentioned previously, past versions of CDPOP (e.g., 
Landguth et al., 2012) modelled natural selection via spatial envi-
ronmental fitness surfaces for either one or two diallelic loci under 
directional selection (Gavrilets, 2004; Landguth et al., 2012; Wright, 
1932), where the genotype-dependent viability of offspring was a 
function of their location on the fitness landscape. Here, we extend 
this approach to include options for simulating multilocus adaptive 
variation (i.e., more than two loci under selection) and multivariate 
environmental selection. Furthermore, this module can also be im-
plemented within the branched program, CDMetaPOP (see Box 1; 
Landguth et al., 2017).

2.2 | Modelling multilocus selection association 
with environmental gradients

This new module incorporates multilocus selection from linear re-
gression models (Falconer & Mackay, 1996; Wade et al., 2001), ena-
bling the extension of landscape genomics analyses to explicitly and 
fully investigate adaptive evolution in complex landscapes. As with 
previous versions of CDPOP, the user specifies the genotype for 
each individual at the initial time step (i.e., number of loci and num-
ber of starting maximum alleles per locus). Now, the user also has the 
option of choosing any number of loci and alleles under selection, as 
well as any number of environmental variables that affect fitness for 
each allele. In this regression model, alleles at multiple loci associ-
ated with multiple environmental variables affect the local fitness 
(F*) of an individual with a given multilocus genotype in an additive 
manner described by Equation 1:

The first term, b0, provides the intercept of the linear model. The 
summation terms refer to the n environmental variables, and a num-
ber of alleles considered at l loci in an individual. Finally, for a given 
value of an environmental variable (Xi), we calculate the bijk effects 
of alleles Ajk, on fitness. Since statistical linkage will be generated 
in additive models whenever two or more loci experience simulta-
neous selection, we do not include a separate term for linkage dis-
equilibrium here (Wade et al., 2001). Physical linkage is not included.

A fitness value, F, between 0 and 1 is obtained by rescaling Equation 
1 by (F∗ −F∗

min
)∕(F∗
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−F∗

min
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max
 and F∗
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 are the maximum and 

minimum, respectively, calculated from Equation 1 for all possible gen-
otype-by-environment combinations. Rescaling the lowest fitness to 
0 ensures there are no negative fitness values. F∗

max
 and F∗
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 are cal-

culated before simulations begin on the entire genotype-by-environ-
mental space given the user defined bijk and Xi. Within the simulation 
workflow, CDPOP implements selection through differential survival 
(1 − F) of an offspring given the relative fitness from Equation 1 at the 
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Box 1 Landscape genetic simulations in CDPOP and CDMetaPOP

Our landscape genetic simulation framework takes two current forms: CDPOP (Landguth & Cushman, 2010) and CDMetaPOP (Landguth 
et al., 2017). Both programs are individual-based, spatially-explicit, landscape demographic and genetic (‘demogenetic’) forward-in-
time simulators. They simulate changes in neutral and/or selection-driven genotypes through time as a function of individual-based 
movement, complex spatial population dynamics, and multiple and changing landscape drivers modelled across continuous space. 
CDMetaPOP was a branch from CDPOP and initially developed for species living in dynamic riverine landscapes (‘riverscapes’). However, 
CDMetaPOP can simulate a range of spatially-explicit processes that describe metapopulation theory across land, river, and seascapes, 
as well as accommodate simulations involving up to hundreds of thousands of individuals making it more computationally efficient than 
CDPOP. Both programs can be parameterized with empirical genetic, demographic, environmental, and/or spatial data sets.
Features in common between both CDPOP and CDMetaPOP include the capacity to simulate:
•	 Individual organisms and their growth, reproduction, genes, movement, mortality, etc. in a spatially-explicit environment.
•	 Spatially-explicit genetic processes such as gene flow, drift, mutation, bottlenecks, mtDNA, and neutral and adaptive genetics.
•	 Various demographic and reproductive processes, including philopatry, twinning, multiple paternity, asexual reproduction, dif-

ferential subpopulation mortality, and age-structured mortality (e.g., Kristensen et al., 2018).
•	 Independent landscape surfaces for mating movement vs. dispersal: movement distributions are a result of cost distances (i.e., 

resistance) among locations.
•	 Dynamic landscape change at any user-defined spatial resolution, including changing land use or climate (Thatte, Joshi, 

Vaidyanathan, Landguth, & Ramakrishnan, 2018).
•	 Species reintroductions, translocations, augmentations, or invasions (Mims et al., 2019).
•	 Hybridization between two species, while tracking admixture through a hybridization index (Nathan et al., 2019).
•	 Disease dynamics, including vertical transmission of infection with a given probability and tracking of infected individuals.
•	 Local adaptation via genotype-environment association using a one- or two-locus selection model (Forester, Jones, Joost, 

Landguth, & Lasky, 2015; Jones et al., 2013; Landguth et al., 2012).
•	 Interactions between landscape resistance to gene flow and local adaptation (Scribner et al., 2016; Creech et al., 2017).
Features specific to CDMetaPOP include the capacity to simulate:
•	 Metapopulation dynamics and associated rates of dispersal, colonization, and extinction emerging from individual-based 

processes.
•	 Subpopulations where environmental conditions vary between, but not within, those subpopulations (i.e., patches).
•	 Up to hundreds of thousands of individuals.
•	 Class structure, specifically, size- or stage-based structure, that can control processes such as maturation probability, growth rate, 

migration and straying probabilities, fecundity, and capture probability (Day, Landguth, Bearlin, Holden, & Whiteley, 2018).
•	 Individual growth based on age, temperature, growing degree days, other environmental surfaces, or admixture coefficients.
•	 Selection at the genotype-environmental level or through genotype-maturation, genotype-growth, or genotype-stray/dispersal 

options.
•	 The hybrid index can also be used to implement differential fitness and/or assortative mating.
•	 Temporal systematic, stochastic, and demographic variability: processes and parameters can vary through time and can be linked 

spatially to environmental or climate variables at the patch level.
•	 Alternate mortality options, including density-independence, density-dependence at the patch and class level, logistic, and age/

class-based. Multiple sources of mortality may operate in an additive or multiplicative fashion.
•	 Annual migration and straying behaviour based on cost-distance surfaces, including distinct demographic processes at migration 

grounds versus. natal grounds (Mims et al., 2019).
•	 Asymmetrical cost distance surface (e.g., wind surfaces: Landguth et al., 2017; riverine barrier surfaces: Mims et al., 2019).
This program note introduces a multilocus selection module that has now been implemented in both CDPOP and CDMetaPOP. This 
module uses a linear additive model to more flexibly parameterize selection across any number of loci and environmental or landscape 
variables. In combination with existing features, this new module will allow users to evaluate the contributions and interactions between 
gene flow, demography, and selection-driven processes across complex, multivariate environmental and landscape conditions.
CDPOP and CDMetaPOP are implemented with Python and require minimal scripting experience. Full details on installation and 
usage, including example runs and descriptions of input files and parameter settings, are provided in the CDPOP and CDMetaPOP 
user manuals, which are bundled with the program downloads.
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location on the landscape where the dispersing individual settles. We 
provide a spreadsheet with CDPOP (betaFile_General.xlsx) that al-
lows users to investigate the fitness impact of beta values in a simple 
two-locus, two-allele model with one or two environmental variables.

Users can also specify the genetic basis of local adaptation by 
modifying the environmental variables to reflect antagonistic plei-
otropy (alternate alleles favoured in different environments) or con-
ditional neutrality (alleles favoured in one environment but neutral 
in another; Anderson, Lee, Rushworth, Colautti, & Mitchell-Olds, 
2013; Yoder & Tiffin, 2017). Because values for the environmental 
variables are spatially-explicit and can have very different scales of 
variability, we require that a standardization (z-score) is performed 
for each environmental variable (e.g., elevation, precipitation, land-
use categories).

2.3 | Validation with global differential 
reproductive success

Validation of the new multilocus selection module required simula-
tions of allele frequency change compared with the theoretical allele 
frequency change shown by Wright (1935) for both the single and 
double diallelic locus selection models. The theoretical equations 
and derivations can be found in Appendix 1 (i.e., Landguth et al., 
2012) and are referred to herein as the Wright-Fisher model.

For the single diallelic locus selection model, we used Equation 
1, F=X1([b111A111+b112A112]), and set the average effects, b111 = 10 
and b112  =  −10. X1 was a uniform spatial selection surface (i.e., 
Wright, 1935 assumption) with all values of 1. Thus, the geno-
types AA, Aa, and aa had relative fitness values of 1.0, 0.5, and 
0.0, respectively.

For the double diallelic locus selection model, we used 
Equation 1, F=X1([b111A111+b112A112]+ [b121A121+b122A122]), and 
set b111 = 10, b112 = −10, b121 = 10, and b122 = −10 with the uni-
form spatial selection surface, X1, having all values of 1. Thus, the 
nine genotypes had relative fitness values of 1.0, 0.5, and 0.0 for 
groupings (AABB, AABb, AaBB), (AAbb, AaBb, aaBB), and (Aabb, 
aaBb, aabb), respectively.

For both the single and double diallelic locus selection model sim-
ulations, the Wright-Fisher model was assumed (i.e., random mating, 
sexual reproduction with both female and male with replacement, off-
spring randomly disperse until a constant population is reached that 
has an equal sex ratio, no mutation, and nonoverlapping generations) 
with one exception: each mated pair produced two offspring to ensure 
a constant population size. We simulated individual genetic exchange 
across 100 nonoverlapping generations among 1,000 randomly spa-
tially located individuals in a 1,024 × 1,024 gridded landscape for each 
selection model. All simulated populations contained an additional 50 
diallelic neutral loci. The change in allele frequency for p1, the allele 
frequency for A, was produced to compare with the results for the 
theoretical change in allele frequency via the Wright-Fisher selection 
models (Appendix 1). We ran 50 Monte Carlo replicates to assess vari-
ability in p1 for each simulation.

2.4 | Expectations with spatially-variable 
differential reproductive success as a function of a 
single environmental variable

Our next task was to determine how spatially-variable selection 
implemented in the new simulation framework would affect spa-
tial patterns of allele frequency. By removing a Wright-Fisher 
assumption, we stepped away from true theoretical validation 
as described in the previous section and moved into assessing 
whether the simulations met expectations. First, we conducted 
the single diallelic selection model as shown previously with the 
same simulation parameters, but replaced the uniform spatial se-
lection surface with a spatially-variable selection surface. Using a 
1,024 × 1,024 gridded raster, we created a categorical landscape 
that included an upper triangle with values of 1, a lower triangle 
with values of −1, and diagonal cells with a value of 0 (Figure 1a). 
Using Equation 1, F=X1([b111A111+b112A112]), we now set the aver-
age effects, b111  =  10 and b112  =  −10. Thus, individuals with the 
genotype AA would have a relative fitness values of 1.0 in the 
upper triangle area and 0.0 in the lower triangle area. Conversely, 
genotype aa would have relative fitness values of 0.0 in the upper 
triangle and 1.0 in the lower triangle. Individuals with the geno-
type Aa would have a relative fitness value of 0.5 regardless of 
where they settled on this landscape. To evaluate this spatial-se-
lection simulation scenario, we ran three simulations which varied 
how we initialized the genotypes by starting the simulations with 
(i) only AA, (ii) only aa, and (iii) random assignment. At the end of 
the simulations, we plotted the distribution of each genotype (AA, 
Aa, and aa) on the landscape. We therefore would expect simula-
tions to produce (i) only AA individuals in the upper triangle, (ii) 
only aa individuals in the lower triangle, and (iii) Aa individuals oc-
curring anywhere on the landscape, with occurrences of AA and aa 
in only the upper and lower triangle, respectively.

2.5 | Expectations with spatially-variable 
differential reproductive success as a function of 
multiple environmental variables

Our next set of simulations included selection on multiple loci 
and alleles as a function of multiple environmental gradients, and 
with restricted isolation-by-distance dispersal. Here, we consid-
ered three environmental variables that affect fitness as shown in 
Figure 1, with three loci and two alleles per locus operating in the 
selection process. Our first environmental variable was the pre-
viously described categorical landscape (Figure 1a). The second 
environmental variable was a gradient landscape with continuous 
values ranging from 1 to −1 from the North-South (Figure 1b). The 
third environmental variable represented a fragmented landscape 
with equal proportion of values for one (e.g., favoured habitat) 
and −1 (e.g., nonfavoured habitat) created in the program QRULE 
(Gardner, 1999; H = 0.5 and p = .5; Figure 1c). Expanding Equation 
1 to consider this example for three spatially variable selection 
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gradients, three loci, and two alleles per locus requires 18 aver-
age effect sizes to be included (or three environmental variables 
* three loci * two alleles = 18 effect sizes), producing 27 possible 
genotypes (or [(a + 2 − 1)!/(2!  *  (a − 1)!]l where a is the possible 
alleles per locus [2 in this example] and l is the possible number 
of loci [three in this example]). For simplicity, we set b111  =  10 
and b112 = −10 for the first locus and environmental variable, X1, 
b221 = 10 and b222 = −10 for the second locus and environmental 
variable, X2, and b331 = 10 and b332 = −10 for the third locus and 
environmental variable, X3, where X1, X2, and X3 are the diagonal, 
gradient, and habitat variables shown in Figure 1, respectively. 
The remaining betas were set to 0. We plotted the genotype-en-
vironment-fitness relationship for this spatially complex example 
in which three loci are associated with three environmental vari-
ables (Figure 2). For illustrative purposes and because we cannot 

visualize the full dimensional space, we held the first environmen-
tal variable constant at X1  =  1 and third environmental variable 
constant at X3 = 1. We allowed the second environmental variable 
to vary across its continuous space, X2 = [−1, 1]. Equation 1 is cal-
culated for each possible genotype by environment combination 
given the betas specified above and rescaled based on F∗

max
 and 

F∗
min

 (60 and −60, respectively) to achieve values between 0 and 1. 
Thus, using these simplified effect sizes, the genotypes that have 
the first allele present in each locus should be favored in areas that 
have values of 1 (i.e., upper triangle, towards north in the gradi-
ent landscape, and habitat patches). Unlike the previous panmictic 
movement simulations, we restricted movement of the individuals 
in these simulations to follow an inverse-square probability func-
tion constrained to a 25% maximum threshold of the entire land-
scape. We initialized all genotypes randomly at the start of the 

F I G U R E  1   Spatial selection landscapes with 1,000 simulated individuals. Values range from 1 to −1 represented by white to black, 
respectively. (a) Diagonal; (b) gradient and (c) habitat

(a) X1 – Categorical (c) X3 – Habitat/No Habitat(b) X2 – Gradient

F I G U R E  2   Genotype-environment-
fitness landscape for the spatially 
complex example in which three loci are 
associated with three environments. For 
illustrated purposes, we held the first 
environmental variable constant at X1 = 1 
(diagonal landscape in Figure 1a) and third 
environmental variable constant at X3 = 1 
(habitat map in Figure 1c). We allowed 
the second environment to vary across 
its continuous space X2 = [−1, 1] (gradient 
landscape in Figure 1b). Equation 1 is 
calculated for each possible genotype-
by-environment combination given the 
betas specified (b111 = 10, b112 = −10, 
b221 = 10, b222 = −10, b331 = 10, b332 = −10, 
and 0 otherwise) and rescaled based on 
F∗
max

 = 60 and F∗
min

 = −60 to achieve fitness 
values between 0 and 1
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simulations. To evaluate the results of this simulation, we plotted 
individuals on the landscape coded by their respective copies of 
the first allele at each of the three loci under selection. We there-
fore would expect to see individuals with homozygous copies of 
each locus to be more successful in landscapes patterned towards 
“1”: upper triangle, towards the North, and in habitat patches.

2.6 | Expectations with multilocus selection and 
differential gene flow

Our final simulations illustrate how the new module can be used to 
simulate multilocus selection using a variety of selection strengths 
under different gene flow scenarios. Here, we simulated 1,000 loci 
with two alleles per locus: 100 loci under selection in response to a 
single environmental variable and 900 neutral loci. We used a gra-
dient landscape with continuous values ranging from 1 to −1 from 
the North-South (Figure 1b). We set the first l = 1, 2, …, 20 loci 
effect sizes to b111 = 0.15 and b112 = −0.15, the following l = 21, 22, 
…, 50 loci effect sizes to b111 = 0.10 and b112 = −0.10, and the last 
l = 51, 52, …, 100 loci effect sizes to b111 = 0.05 and b112 = −0.05 (re-
flecting “strong” [n = 20], “moderate” [n = 30], and “weak” [n = 50] 
selection, respectively). We increased the population size to 5,000 
for these simulations within the same previous 1,024  ×  1,024 
simulation landscape. We restricted movement of the individuals 
in these final simulations to follow an inverse-square probability 
function constrained to 5%, 10%, and 15% maximum threshold of 
the entire landscape. We initialized all genotypes randomly at the 
start of the simulations and ran the simulations for 200 genera-
tions, using the first 100 generations as a burnin period where no 
selection was operating. To evaluate the results of these scenarios, 

we first used sparse non-negative matrix factorization to estimate 
the number of populations in each simulation (Frichot, Mathieu, 
Trouillon, Bouchard, & François, 2014) using the function snmf in 
the lea package (Frichot & François, 2015) with R version 3.5.3 (R 
Core Team, 2019). We then calculated and plotted locus-specific 
FST for each of the 100 loci under selection and the first 400 neu-
tral loci using the wc function in the hierfstat package (Goudet & 
Jombart, 2015; note, for ease of visualization we did not plot all 
900 neutral loci). Our expectation is for high, moderate, and weak 
differentiation of selected loci from neutral expectation for the 
strong, moderate, and weakly selected loci, respectively, with in-
creasing levels of differentiation at both selected and neutral loci 
as gene flow decreases.

3  | RESULTS

3.1 | Multilocus selection under the Wright-Fisher 
model

For the single diallelic locus under the Wright-Fisher selection model, 
the CDPOP simulation nearly exactly matched Equation A2. p1,t (la-
belled Equation A2), and is plotted against the averaged simulated 
allele frequency for the 50 replicates in Figure 3a, despite the viola-
tion of one Wright-Fisher assumption (i.e., two offspring per mated 
pair). Thus, the new module implemented selection under “near” ideal 
Wright-Fisher conditions correctly and the outputs matched theoreti-
cal expectations. For the double diallelic locus scenario, the CDPOP 
simulation results also very closely matched the theoretical expecta-
tion of Equation A5. p1,t (labelled Equation A5) is plotted against the 
averaged simulated allele frequency for the 50 replicates in Figure 3b.

F I G U R E  3   The simulations for the (a) single and (b) double diallelic locus selection models. For the single diallelic locus selection model, 
we used F=X1([b111A111+b112A112]), and set the average effects, b111 = 10 and b112 = −10. For the double diallelic locus selection model, we 
used F=X1([b111A111+b112A112]+ [b121A121+b122A122]), and set set b111 = 10, b112 = −10, b121 = 10, and b122 = −10. X1 was a uniform spatial 
selection surface with all values of 1. The dashed-dotted line is the averaged simulated allele frequency from the 50 replicates. The solid 
lines are the expected allele frequency given by Equations A2 and A5 (see Appendix 1). Note that the confidence intervals generated from 
the 50 Monte Carlo runs are too small to be viewed at this scale
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3.2 | Multilocus selection as a function of a single 
environmental variable

The next round of simulations enabled us to evaluate how the new 
module's spatially explicit functionality would affect resulting spatial 
patterns of allele frequency. Figure 4 shows the spatial plots for time 
100 for the simulations with a single diallelic locus modelled on a cat-
egorical selection landscape (Figure 1a). The simulations that were 
only initialized with genotype AA showed that individuals could not 
survive within the lower triangle area (empty circles in Figure 4a). The 
opposite case is shown in Figure 4b, where individuals were initialized 
with only aa, resulting in survival only in the lower triangle. Random 
initialization of genotypes produced a spatial pattern consistent with 
antagonistic pleiotropy (i.e., different environmental conditions favor 
alternate alleles, Figure 4c). The homozygous genotypes emerged in 
their respective upper and lower triangles and genotype Aa (which had 
a relative fitness value of 0.5 regardless of spatial location) could occur 
anywhere on the landscape.

3.3 | Multilocus selection as a function of multiple 
environmental variables

Next, we illustrated a more complex scenario by simulating three 
loci, each under selection in response to a different environmen-
tal variable. Figure 5 shows individual genotypes for time step 100 
plotted on the landscapes. For visualization, we superimposed each 
landscape shown in Figure 1 and white areas correspond to areas 
where each landscape had a value of 1 and black areas are areas 
where each landscape had a value of −1. For clarity, we coded indi-
viduals based on the count of the first allele at each of the three loci, 
where individuals could have either 2, 1, or 0 copies of this allele. 
Individuals with the most copies of these alleles (green dots) occupy 
areas in the upper triangle, towards the north for the gradient land-
scape, and in (grey) favoured habitat patches, as expected based on 
the spatial pattern of simulated fitness.

3.4 | Multilocus selection using varying levels of 
selection and gene flow

Our final simulations illustrated how the new module can simulate 
multilocus selection with loci under varying selection strengths. For 
each of the three dispersal scenarios (5%, 10%, 15%), we estimated 
five, four, and four populations, respectively, using the package snmf. 
After 100 generations of selection, we observed the expected signals 
of selection as a product of gene flow. Loci under strong selection 
(b111 = 0.15 and b112 = −0.15) were most differentiated from neutral 
expectations and displayed a positive correlation between variabil-
ity in FST and gene flow (Figure 6). Likewise, loci under moderate 
(b1l1 = 0.10 and b1l2 = −0.10) and weak (b111 = 0.05 and b112 = −0.05) 
selection were less well differentiated, and displayed more vari-
ability in FST as dispersal capacity increased (Figure 6). Finally, we 
observed an inverse correlation between gene flow and population 
differentiation at both selected and neutral loci in response to in-
creased isolation and genetic drift.

4  | DISCUSSION

We incorporated a multilocus selection module into the landscape 
genomic simulator CDPOP and its branched program, CDMetaPOP, 
using a linear additive modelling framework applied to multiple loci 
under selection as a function of multiple environmental variables. 
We showed that under Wright-Fisher assumptions, simulations of 
multilocus selection matched expected rates of changes in allele 
frequency. When spatially-explicit selection was implemented on 
environmental gradients, the new CDPOP module produced the 
expected spatial distribution of genotypes. This module allows for 
more realistic applications of multilocus selection across complex 
landscapes, with multiple loci and alleles under varying selection 
levels that can be linked to multiple environmental surfaces, pro-
viding an important tool for the rapidly growing field of landscape 
genomics.

F I G U R E  4   Outcome for simulation of a single spatially-variable selection landscape and single diallelic locus. Individuals are colour coded 
by genotypes: AA, green; Aa, yellow; aa, red. Empty circles indicate an unoccupied location. (a) Simulations were initialized with only AA. (b) 
simulations were initialized with only aa. (c) Simulations were initialized with randomly chosen genotypes

(a) Initialized with AA (c) Initialized random(b) Initialized with aa
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F I G U R E  6   Locus-specific FST values 
for multilocus selection simulations 
under three selection strengths (strong, 
moderate, and weak) and three dispersal 
scenarios (5%, 10%, and 15% of the 
landscape). Note that the y-axis is on the 
same scale for the three simulations

F I G U R E  5   Outcome for simulation 
of a complex landscape and three loci. 
The three selection landscapes (Figure 
1) are superimposed with lighter-white 
areas referring to areas where all three 
landscapes have values of 1 and darker 
areas mean all three landscapes have 
values of −1. The copies (either 2, 1, or 
0) of the first allele for each of the three 
loci are plotted, where darker green 
genotypes have more copies of these 
alleles (e.g., 2, 2, 2 corresponds to 2 copies 
of the first allele for the first, second 
and third loci, respectively). The first 
locus is associated with the categorical 
landscape (X1-Figure 1a). The second 
locus is associated with the gradient 
landscape (X2-Figure 1b). The third locus 
is associated with the habitat fragmented 
landscape (X3-Figure 1c)
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The use of simulation modelling in landscape genetics is 
growing, as individual-based, spatially-explicit genetic modelling 
tools have proliferated (e.g., Nemo: Guillaume & Rougemont, 
2006; quantiNemo: Neuenschwander, Michaud, & Goudet, 2018; 
SimAdapt: Rebaudo et al., 2013; MetaPopGen: Andrello & Manel, 
2015; HexSim: Schumaker & Brookes, 2018). Landscape genetics 
studies are also increasingly coupling empirical data with simula-
tion designs (e.g., Steinbach et al., 2018). Because essential model 
features and simplifying assumptions vary from study to study, 
the variety of available simulation models is a strength, since these 
programs focus on different processes and represent environmen-
tal heterogeneity in different ways. Landscape genetics research-
ers now have the opportunity to explore intermodel comparisons, 
providing further insight into the influences of model structure, 
parameters or other assumptions on landscape genetic processes 
(e.g., Safner, Miller, McRae, Fortin, & Manel, 2011; Blair et al., 
2012). For a general review and comparison of available genetic 
simulation software, see Hoban (2014) or the Genetic Simulation 
Resources catalogue provided by the National Institute of Health 
(https​://popmo​dels.cance​rcont​rol.cancer.gov/gsr/).

Multilocus selection can be modelled in different ways. For ex-
ample, SimAdapt (Rebaudo et al., 2013) implements a multiplicative 
model in which fitness values for single locus genotypes are multi-
plied to derive the fitness of the multilocus genotype. In this new 
module, we use a linear additive model of multilocus selection, which 
is no less biologically relevant than its multiplicative counterpart, and 
allows for linkage with additional relevant theory (Wade et al., 2001; 
Le Corre & Kremer, 2003; also see Appendix 1 for a more in-depth 
discussion of the use of additive vs. multiplicative models). No matter 
which model of selection is applied, landscape genetic simulators are 
limited by the computational burden of simulating many individuals 
(>10,000) with many loci (>20,000) across long time periods (>10,000 
generations) and many Monte Carlo replicates (>1,000). In these com-
putationally intensive simulation scenarios, other evolutionary popu-
lation genomic programs may be more suitable (e.g., SLiM: Haller & 
Messe, 2017).

Interest in simulating realistic scenarios of multilocus selection, 
including the ability to model more complex multivariate and multilo-
cus selection, has been driven by the growing number of empirical ge-
nomic data sets derived from next-generation sequencing (Andrews, 
Good, Miller, Luikart, & Hohenlohe, 2016; Goodwin, McPherson, 
& McCombie, 2016). These technological and methodological ad-
vances have increased our capacity to investigate the genomic basis 
of local adaptation in an increasingly large number of non-model 
species. However, our ability to validate candidate adaptive loci that 
are identified through outlier-based approaches has lagged for a 
number of reasons, including: the small number of well-annotated 
reference genomes available; the difficulty of obtaining phenotypic 
data for many species (especially at the large sample sizes needed 
for robust genome-wide association studies to identify small effect 
loci that underlie most quantitative traits); and the impracticality of 
experimental approaches to validation for many organisms, such as 
common gardens and reciprocal transplants (e.g., Cushman, 2014; de 

Villemereuil, Gaggiotti, & Till-Bottraud, 2016; Lind, Menon, Bolte, 
Faske, & Eckert, 2018). In this context, simulation models may be the 
best option currently available for corroborating empirical findings 
in many species. Simulations can also be used to quantify error rates 
and conduct power analyses in landscape genomics studies, as they 
have proved useful in evaluating landscape genetic model selection 
approaches (e.g., Cushman & Landguth, 2010; Cushman, Wasserman, 
Landguth, & Shirk, 2013; Shirk, Landguth, & Cushman, 2018). We 
hope that this new module in CDPOP and CDMetaPOP will help re-
searchers not only develop new theory in landscape genomics, but 
also improve the inference derived from empirical research.
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Supplemental Text 1: Theoretical expected change in allele frequencies for one 
and two locus selection models. 

 

The theoretical allele frequency change (∆p1) as shown by Wright (1935) is 

∆𝑝1 =
𝑝1𝑞1

𝑤̅1
[𝑝1(𝑤11 − 𝑤12) + 𝑞1(𝑤22 − 𝑤12)]                                   [A1] 

where p1 is the allele frequency for A, q1 is the allele frequency for a, w11 is the relative fitness 

value for genotype AA, w12 is the relative fitness value for genotype Aa, w22 is the relative 

fitness value for genotype aa, and 𝑤̅1 = 𝑝1
2𝑤11 + 2𝑝1𝑞1𝑤12 + 𝑞1

2𝑤22 is the average fitness of 

the population. From here a difference equation for the single locus selection model can be 

derived to show the change in allele frequency for A through time, 

𝑝1,𝑡 =
𝑝1,𝑡−1𝑞1,𝑡−1𝑤12+𝑝1,𝑡−1

2 𝑤11

𝑝1,𝑡−1𝑤11+2𝑝1,𝑡−1𝑞1,𝑡−1𝑤12+𝑞1,𝑡−1
2 𝑤22

 .                                       [A2]   

With the two-locus selection simulation, we compare the simulated change in allele 

frequency to the derived expected change in allele frequency. First, the expected frequency of 

the gametes after selection was 

𝑥11
′ = 𝑤̅11(𝑥11 − cD)/ 𝑤̅2,    𝑥12

′ = 𝑤̅12(𝑥12 + cD)/ 𝑤̅2                         [A3a,b]      

 𝑥21
′ = 𝑤̅21(𝑥21 + cD)/ 𝑤̅2,    𝑥22

′ = 𝑤̅22(𝑥22 − cD)/ 𝑤̅2                       [A3c,d]       

where the average relative fitness values for each gamete is 𝑤̅𝑖𝑗 = ∑ ∑ 𝑥𝑘𝑙𝑤𝑖𝑗.𝑘𝑙
2
𝑙=1

2
𝑘=1  and 

𝑤̅2 = ∑ ∑ 𝑥𝑖𝑗𝑤̅𝑖𝑗
2
𝑗=1

2
𝑖=1  is the average relative fitness value for the population. We assumed 

independent assortment (i.e., free recombination, c = 0) and that there was no linkage 

disequilibrium (D = 0). Assuming 𝑥11 = 𝑝1𝑞1, 𝑥12 = 𝑝1𝑞2, 𝑥21 = 𝑝2𝑞1, and 𝑥22 = 𝑝2𝑞2, then the 

expected allele frequency after selection would be 

𝑝1
′ = 𝑥11

′ + 𝑥12
′ .                                                        [A4] 

Given the initial allele frequency of 𝑝1(0) = 𝑥11(0) + 𝑥12(0), the difference equation for the 

two locus selection model becomes 

𝑝1,𝑡 =
𝑝1,𝑡−1𝑞1,𝑡−1𝑤̅11+𝑝1,𝑡−1𝑞2,𝑡−1𝑤̅12

𝑤̅2
.                                           [A5] 
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Supplemental Text 2: Additive versus multiplicative models for fitness. 

 

The convention of treating fitness as multiplicative across genotypes at a locus or across 

multiple loci is a historical assumption of the original models put forth by Fisher (1930) and 

Haldane (1932). As discussed in Wade et al. (2001), the reliance on the multiplicative model lies 

in mathematical convenience, rather than biological necessity. The argument below is only 

about multiplicative effects across genotypes and loci. Assuming multiplicative effects across 

life history stages during which selection manifests is a different issue (e.g., across mating types 

for evaluating fertility differentials, see Bodmer (1965).  

For the single locus case with two alleles, this math (multiplicative fitnesses, e.g., AA: 

(1+s)2, Aa: 1+s, aa: 1) has the appealing property that the expected allele frequency change (Δp) 

across a single generation due to fitness differences is the same for both diploids and haploids 

(Felsenstein, 2017). This does not happen with additive effects on fitness (i.e., AA: 1+2s, Aa: 

1+s, aa: 1). The relevant equations for the change in allele frequency across a single generation 

for each fitness scheme (add = additive, mul = multiplicative) are: 

Δ𝑝𝑎𝑑𝑑 =  
𝑠𝑝(1 − 𝑝)

1 + 2𝑠𝑝
 

Δ𝑝𝑚𝑢𝑙 =  
𝑠𝑝(1−𝑝)

1+𝑠𝑝
 , 

where p is the allele frequency of a reference allele in the current generation and s is the 

coefficient of selection. While the multiplicative model does allow for additional exact and 

easily derived solutions, this is solely a mathematical convenience and there is no biological 

reason to assume a multiplicative model for a single locus. When s is small, moreover, there is 

only a slight difference between these two assumptions (Figure A1) for Δp. Only at low to 

intermediate allele frequencies (p ≈ 0.2 – 0.5) and very strong selection (s > 0.8) do the scaled 

expectations (i.e., divided by p) differ by approximately 10%. At more realistic values of s, the 

difference between assumptions is < 2%. Differences between these two parameterizations are 



 
 

4 
 

usually so small, moreover, that many authors assume they are equivalent (e.g., Smouse 1986) 

or have shown that the same qualitative patterns emerge (e.g., Karlin & Liberman, 1979a and 

references therein).  In all cases, the assumption of additivity produces expected allele 

frequency changes between generations that are smaller than those assuming multiplicative 

effects. This introduces a conservative outcome to the assumption of the additive model, which 

may be preferred when using predications to inform management decisions. 

 

 

Figure A1. Relative difference in allele frequency change across a single generation for 
multiplicative and additive fitnesses as a function of allele frequency (p) and the coefficient of 
selection (s). Contours are based on the relative difference between multiplicative and additive 
assumptions, which is defined as the difference between Δp assuming multiplicative fitnesses 
and Δp assuming additive fitnesses divided by p.  
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For multiple loci, each with its own effects on viabilities and fecundities, multiplicative 

total fitness is calculated as the product of these locus-specific values. For example, if viability is 

the sole determinant of fitness, and two loci contribute to fitness differences across individuals, 

then the probability of survival for the multilocus genotype is the product of these probabilities 

for genotypes at each locus. Just as with additivity, however, this is an assumption, and one 

that enforces complete independence in the effects of alleles (and the genotypes they define 

for diploids) at each locus in determining overall fitness. Consider two-locus models of selection 

in a population that has a coefficient of linkage disequilibrium (D) equal to zero before 

selection. Assuming multiplicative fitnesses requires that D is also zero after selection, so that 

allele frequencies and their changes determine the response to selection. Thus, use of 

multiplicative fitnesses defines an architecture in this example with complete independence 

among its causative components (e.g., no linkage disequilibrium), so that much of their 

dynamics can be studied by simply considering the vector of allele frequency changes (one 

element per locus corresponding to the Δp for each locus, but see also Barton & Turelli 1987). 

This may be convenient mathematically, but does not necessarily provide increased adherence 

to biological reality relative to a completely additive parameterization.  

Interestingly, a completely additive model across loci in two-locus selection models also 

has as its equilibrium a similar value of D = 0 (Karlin & Liberman 1979b), but this is an 

equilibrium that is approached over time, not an induced artifact of an assumption. The point 

here is to show, as does Wade et al. (2001), that there is nothing inherently more realistic 

biologically by assuming a multiplicative model, and in fact the additive model has additional 

relevant theory discussing dynamics of detectable signal in real data based on the build-up of 

linkage disequilibrium (e.g., Le Corre & Kremer 2003). Lastly, if we ignore linkage disequilibrium 

in either model, even strong selection (where most of the disconnect between models lies) on a 

sufficiently large multilocus architecture would distribute the total selective effect among so 

many loci that at any given locus this strong overall selection would manifest as a much smaller 
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coefficient of selection (Haldane 1930; Charlesworth & Charlesworth 2012, equation 3.17). We 

would thus be back to something like the case above (Figure A1) where the differences are 

relatively small between these models. 
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