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Abstract
New computational methods and next-generation sequencing (NGS) approaches have 
enabled the use of thousands or hundreds of thousands of genetic markers to address 
previously intractable questions. The methods and massive marker sets present both 
new data analysis challenges and opportunities to visualize, understand, and apply 
population and conservation genomic data in novel ways. The large scale and com-
plexity of NGS data also increases the expertise and effort required to thoroughly and 
thoughtfully analyze and interpret data. To aid in this endeavor, a recent workshop 
entitled “Population Genomic Data Analysis,” also known as “ConGen 2017,” was held 
at the University of Montana. The ConGen workshop brought 15 instructors together 
with knowledge in a wide range of topics including NGS data filtering, genome assem-
bly, genomic monitoring of effective population size, migration modeling, detecting 
adaptive genomic variation, genomewide association analysis, inbreeding depression, 
and landscape genomics. Here, we summarize the major themes of the workshop and 
the important take-home points that were offered to students throughout. We em-
phasize increasing participation by women in population and conservation genomics 
as a vital step for the advancement of science. Some important themes that emerged 
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1  | INTRODUC TION

At this time, conservation and evolutionary geneticists can em-
ploy the power of genomic tools to answer questions in con-
servation that could not be answered using traditional genetics 
approaches (Allendorf, Hohenlohe, & Luikart, 2010; Bernatchez 
et al., 2017; Garner et al., 2016; Harrisson, Pavlova, Telonis-Scott, 
& Sunnucks, 2014; McMahon, Teeling, & Höglund, 2014; Shafer 
et al., 2015a, 2015b). Technological and analytical advances 
now allow us to use many thousands of loci, gene expression, 
or epigenetics to address basic questions of relevance for con-
servation, such as identifying loci associated with local adapta-
tion or adaptive potential in species face changing environments 
(Bernatchez, 2016; Flanagan, Forester, Latch, Aitken, & Hoban, 
2017; Harrisson et al., 2014; Hoban et al., 2016; Hoffmann et al., 
2015; Jensen, Foll, & Bernatchez, 2016; Le Luyer et al., 2017; 
Wade et al., 2016). As conservation genomics matures, new chal-
lenges are arising. It is essential for researchers to keep up with 
the rapidly changing methods in appropriate study design, data 
quality assessment, and selecting appropriate analyses to obtain 
accurate results for conservation and management decisions 
(Benestan et al., 2016).

To address arising challenges, 15 experts from diverse areas of 
genomic data analysis came together to teach and exchange ideas 
about cutting-edge approaches for population genomic data anal-
ysis and interpretation. Students, postdocs, faculty, and agency 
researchers (e.g., museums, agency biologists) originating from 15 
countries brought an assortment of data to work through various 
computational analyses. Of 31 students, 23 had restriction-site as-
sociated DNA (RAD) or genotyping by sequencing (GBS) data, four 
had exon capture data, and four students had whole-genome se-
quencing (WGS) data. Interestingly, of the 30 attendees at ConGen 
just 4 years ago, only a few students had RAD-seq data, only one 
had sequence capture data, and none had WGS data. The main focus 
of the 15 experts was on narrow-sense conservation genomics 
applications, which require use of conceptually novel approaches 
(Garner et al., 2016).

The week-long workshop, held at the University of Montana’s 
Flathead Lake Biological Station, provided training in theory as well 
as empirical applications of NGS data production and analyses. 
Lectures, discussions, hands-on analysis of empirical data, and one-
on-one assistance from instructors improved students’ knowledge of 
conservation and evolutionary genomic projects. Many participants 
in the past have taken the knowledge and resources (PowerPoint 
slides, worksheets, video recorded lectures) acquired during the 
workshop and disseminated it to others in their laboratories, further 
extending the educational reach of ConGen among population ge-
nomic researchers (http://www.umt.edu/sell/cps/congen2017/).

In the opening keynote lecture, L. Bernatchez discussed several 
mechanisms that may enhance the maintenance of genetic variation 
and evolutionary potential in the face of a changing environment. 
Among these mechanisms that have been overlooked and should be 
considered in future theoretical development and predictive models, 
he discussed the prevalence of soft sweeps, the polygenic basis of 
adaptation, balancing selection, and transient polymorphisms, as well 
as epigenetic variation. A key message was that adaptive evolution in 
nature rarely involves the fixation of beneficial alleles. Instead, adap-
tation apparently proceeds most commonly by soft sweeps entailing 
shifts in frequencies of alleles being shared between differentially 
adapted populations. At last, L. Bernatchez argued that a new para-
dox seems to be emerging from recent studies whereby populations 
of highly reduced effective population sizes (Ne) and impoverished 
genetic diversity can sometimes retain their adaptive potential, and 
that epigenetic variation could account for this apparent contradic-
tion (Bernatchez, 2016).

The remaining lectures focused mainly on approaches for data 
production or analysis. We discuss highlights from these lectures 
with the goal of motivating and educating a worldwide audience 
to improve population genomic data analysis and thereby advance 
the role of genomics in molecular ecology, evolutionary biology, and 
conservation. We describe (a) issues regarding recruiting and retain-
ing a diverse workforce in conservation genomics, (b) impacts of 
genotyping error and data quality, and (c) improvements to down-
stream population genomic analyses.

during the workshop included the need for data visualization and its importance in 
finding problematic data, the effects of data filtering choices on downstream popula-
tion genomic analyses, the increasing availability of whole-genome sequencing, and 
the new challenges it presents. Our goal here is to help motivate and educate a world-
wide audience to improve population genomic data analysis and interpretation, and 
thereby advance the contribution of genomics to molecular ecology, evolutionary biol-
ogy, and especially to the conservation of biodiversity.

K E Y W O R D S

bioinformatics pipeline, conservation genomics workshop, diversity in STEM, landscape 
genomics, population genomics
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2  | INCRE A SING CONTRIBUTIONS BY 
WOMEN (SAR AH HENDRICKS AND BRENNA 
FORESTER)

Following the productive trend at recent ecology and evolution-
ary biology conferences, issues of gender bias were discussed at 
ConGen. When this important topic is not widely and openly exam-
ined, it can inhibit the advancement of science generally, and con-
servation and population genomics specifically. Diversity leads to 
better problem-solving, expands the talent pool, and promotes full 
inclusion of excellence across the social spectrum (Blackburn, 2017; 
Nielsen et al., 2017). Among the plethora of topics regarding increas-
ing diversity in STEM fields (Blackburn, 2017; Wellenreuther & Otto, 
2015), here we focus on overcoming the biases against women in 
computer sciences and the persistence of unconscious gender ste-
reotypes that influence both male and female researchers.

Gender biases in computer science training may limit the effec-
tiveness of efforts to attract and retain the best and most diverse 
workforce in conservation genomics. As of 2014, just 18.1% of 
computer science bachelor’s degrees were awarded to women, and 
this proportion has declined by 10% over the last 10 years, further 
widening the gender gap (NCSES, 2016). This deficit in female com-
puter scientists has been attributed to a lower sense of belonging by 
women than men due to a predominately male culture in the field 
(Cheryan, Ziegler, Montoya, & Jiang, 2017). There is also evidence 
of gender gaps in self-efficacy that may be due to a lack of sufficient 
early education in computer programming (Cheryan et al., 2017). 
Although not reported, these issues likely persist in bioinformatics 
and genomics. Efforts to maximize gender inclusion in computer sci-
ence may benefit from changing masculine cultures in technological 
fields and providing early experiences for all students that signal 
a sense of belonging and ability to succeed in these fields. Efforts 
led by women, such as “Girls Who Code” (https://girlswhocode.
com/) and “Learn to Code with Me” (https://learntocodewith.me/
posts/13-places-women-learn-code/), aim to decrease the gender 
gap by targeting coding courses and workshops to girls and women. 
Likewise, short courses such as ConGen, which teach basics in linux, 
bash, and R scripting, act to support an inclusive community and ad-
dress limitations due to gendered perceptions in the genomics era.

Unconscious stereotypes persist in the minds of male and fe-
male researchers, as evident in the studies of reference letters for 
postdoctoral fellowships and other academic positions (Dutt, Pfaff, 
Bernstein, Dillard, & Block, 2016; Madera, Hebl, & Martin, 2009; Trix 
& Psenka, 2003). One study of recommendation letters for medical 
faculty positions found that letters written on behalf of females dif-
fered from those written on behalf of men in length, negative lan-
guage, and gender-linked terms. Overall, the study found that the 
letters, regardless of the gender of the recommender, reinforced 
stereotypes that portray men as researchers and professionals and 
women as teachers and students (Trix & Psenka, 2003). Another 
study found that men, more than women, were described as having 
agentic leadership traits, such as being in control of subordinates, 
speaking assertively, working independently and competitively, and 

initiating tasks (Madera et al., 2009). Furthermore, women were de-
scribed as having more communal characteristics, which had a neg-
ative association for women with employment decisions (Madera 
et al., 2009). Letters of recommendation have been shown to greatly 
affect hireability ratings of applicants (Madera et al., 2009). On the 
level of personal action, we suggest recommenders edit their own 
letters to avoid gender bias (http://www.csw.arizona.edu/LORbias).

Despite similar proportions of women and men awarded doctoral 
degrees in science and engineering disciplines, women are less likely 
to obtain tenure-track positions in academia than their male coun-
terparts. Although there are many reasons for this “leaky pipeline” 
(Gasser & Shaffer, 2014; Goulden, Mason, & Frasch, 2011; Holmes, 
OConnell, & Dutt, 2015), increasing training and avoiding biases in 
reference letters may benefit not only women, but also the greater 
scientific community by promoting innovation through diversity and 
inclusion. Further, there are many topics such as referee opportunity 
bias (Lerback & Hanson, 2017), the childcare-conference conundrum 
(Calisi & A Working Group of Mothers in Science, 2018), and mis-
conceptions around hiring preferences (Williams & Ceci, 2015) that 
should also be addressed to reduce disadvantages to women. With 
the brief mention of this topic, we hope to stimulate future studies of 
gatekeeping practices in the field of conservation, so institutions can 
develop initiatives to recruit, retain, and advance women in STEM 
fields as mentorship will be essential for eliminating gender bias in 
computer science, bioinformatics, and by extension, conservation 
biology. We ask our readers to initiate discussions regarding the per-
sistence of stereotypes and how these stereotypes affect excellence 
across our community. We wonder: Can the active and intentional 
cultivation of inclusivity help to expand the role of genomics in mo-
lecular ecology, population genomics, and nature conservation?

3  | GENOT YPING ERROR AND IMPROVING 
DATA QUALIT Y

On a more technical level, several authors discussed ways to assess 
and prevent genotyping errors and improve data quality. We discuss 
several of these here.

3.1 | Back to the basics: finding and visualizing 
erroneous data (Eric Anderson and Robin Waples)

3.1.1 | Genotyping errors

Systematic departures from Hardy–Weinberg equilibrium (HWE) 
in datasets where HWE is expected can indicate genotyping er-
rors in which heterozygotes are miscalled as homozygotes. A simple 
visualization of expected and observed frequencies of homozygote 
genotypes across single nucleotide polymorphisms (SNPs) can be 
effective in identifying data problems (Figure 1). A simple model 
for estimating the heterozygote miscall (dropout) rate was applied 
to 12 publicly available RAD-seq datasets (Fernández et al., 2016; 
Hecht, Matala, Hess, & Narum, 2015; Laporte et al., 2016; Larson 
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et al., 2014; Le Moan, Gagnaire, & Bonhomme, 2016; Portnoy et al., 
2015; Prince et al., 2017; Puritz, Gold, & Portnoy, 2016; Ravinet 
et al., 2016; Swaegers et al., 2015). While a few had low genotyping 
error rates (<5%), in others, allelic dropout, low read depth, PCR du-
plicates, erroneous assembly, and/or poor filtering resulted in much 
higher estimated error rates, with between 5% and 72% of heterozy-
gotes apparently being miscalled as homozygotes. Although some 
of these apparent high error rates could reflect true heterozygote 
deficiencies due to the Wahlund effect or other factors, in all cases 
the samples were thought to be from a single population. Hence, 

this provides a cautionary note that it is good practice to visualize 
your data to ascertain if more homozygotes are called than expected 
under Hardy–Weinberg equilibrium.

3.1.2 | Probabilistic genotype calling

Probabilistic genotype calling, as conducted by the software program 
ANGSD (Korneliussen, Albrechtsen, & Nielsen, 2014), is a principled 
method for dealing with low-coverage sequencing data; however, it 
should be applied carefully. With low-coverage sequencing, because 
there is so little information at any individual site, the statistical 
model and the prior distributions are relatively more influential than 
they are with high-read-depth data. A good example can be seen in a 
recent paper by Prince et al. (2017) which features lower-depth sam-
pling than many other contemporary RAD-seq studies. In analyses 
of their RAD-seq data, Prince et al. used ANGSD to integrate over 
the genotype uncertainty rather than directly calling genotypes. 
Even more importantly, when they were able to, they were careful 
to use population-specific allele frequency-based genotype priors 
for their analyses rather than a simple uniform prior distribution on 
genotypes. The choice of prior is important: If one uses ANGSD to 
call genotypes from the Prince et al. data using the uniform prior on 
genotypes, the result shows a strong tendency to incorrectly infer 
heterozygotes as homozygotes (Figure 1c). This is not simply a con-
sequence of forcing ANGSD to call genotypes. Rather, the posterior 
probabilities, themselves, of the genotypes carry extra weight on 
the homozygote classes, because the uniform prior does not use al-
lele frequency information to help infer the genotypes.

In an increasing manner, recent publications have suggested 
that probabilistic genotyping obviates the need for high mean depth 
of coverage (>10 to 20×). For example, Prince et al. (2017) found 
that PCA analysis applied to their full dataset yielded a first princi-
pal component driven largely by variation in read depth (M. Miller, 
personal communication, February 7, 2018). Randomly subsam-
pling reads from each individual to the same depth eliminated that 
technical variation, and, though it led them to discard almost 70% 
of their sequencing reads, with probabilistic genotyping they were 
still able to recover meaningful population structure. To evaluate 

F IGURE  1 Observed (y-axis) versus expected (x-axis) 
homozygote frequencies at SNPs in three RAD studies of Chinook 
salmon. The solid black line is at y = x, and the dotted lines show 
the maximum and minimum possible observed values given the 
expected values computed from the observed allele frequencies. 
n is number of individuals, L is number of SNPs, and HMR is the 
heterozygote miscall rate estimated from the dataset. (a) Korukluk 
River, Western Alaska (Larson et al., 2014): a carefully filtered 
dataset showing almost no distortions from HWE and with a low 
estimated HMR of 0.02. (b) Johnson Creek (Hecht et al., 2015): 
Most of the points lie above the y = x line and HMR is estimated to 
be 0.17. (c) Low-read-depth data from mature-migrating Umpqua 
river Chinook (Prince et al., 2017). Genotypes were called using 
ANGSD’s doGeno option assuming a uniform prior on genotypes. 
Profound homozygote excesses are observed with HMR = 0.52

Umpqua Mature,   n = 27,   L = 15,228,   HMR = 0.53

Johnson Creek,   n = 68,  L = 13,764,   HMR = 0.21

Korukluk,   n = 57,   L = 10,944,   HMR = 0.02
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how effectively probabilistic genotype calling can retrieve the same 
inference with ever-smaller amounts of sequencing, Anderson pre-
sented an analysis using subsampled versions of a high-depth RAD 
dataset. He first performed PCA using SNPRelate (Zheng et al., 2012) 
to resolve population structure of a North American songbird using 
SNPs called from high-quality, high-read-depth RAD data using a 
GATK pipeline (mean read depth at 105,000 SNPs across 175 in-
dividuals was 36). He then used ANGSD and ngsCovar (Fumagalli, 
Vieira, Linderoth, & Nielsen, 2014) a probabilistic genotyping ap-
proach to PCA, on the BAM files for the same 175 birds after sub-
sampling so that the mean read depth at each of those 105,000 loci 
was expected to be 0.65, 1, 2, 5, and 10. ANGSD was not restricted 
to using only the previously discovered 105,000 SNPs, and, in fact 
called between 29,331 SNPs at 0.65× and 898,320 SNPs at 10×. 
Figure 2 shows that clusters in the first two principal components 
from SNPRelate on the high-read-depth data resolve subspecies and 
show structure within subspecies that corresponds to state of origin. 
Remarkably, at 0.65×, ngsCovar identifies roughly similar groupings, 
albeit with looser clustering. However, at all other read depths, ngs-
Covar identifies clusters that are clearly inconsistent with subspecies 

designations and become dominated by Lissajous curves (Novembre 
& Stephens, 2008).

Overall, the results suggest that some probabilistic methods de-
veloped for low-coverage data might behave unpredictably when 
provided with high-quality, high-read-depth RAD data. However, 
new methods based on probabilistic genotyping are continually 
emerging. For example, the ANGSD methods PCAngsd and PCA_
MDS are both reported to outperform ngsCovar with variable se-
quencing depth (see http://www.popgen.dk/angsd/index.php/
PCA). Probabilistic inference from next-generation sequencing data 
is an important advance; however, one should not assume that it will 
automatically overcome shortcomings in sequence data caused by 
unsatisfactory sample quality, poor library preparation, or insuffi-
cient sequencing. As with many approaches for next-generation se-
quencing, user-specified settings of models, priors, and filtering can 
have strong effects on the results.

3.1.3 | Relatedness

Many researchers have concluded that it is important to remove pu-
tative siblings from population genetics datasets before conducting 

F IGURE  2 Plots of the first two principal components from PCA of unpublished RAD data showing population structure among four 
subspecies of a North American passerine. Each point is an individual bird. Top left panel shows the result obtained in the original study, 
which used 105,000 SNPs called with an average read depth of 36× across 175 birds analyzed with SNPRelate (Zheng et al., 2012). Remaining 
panels show results obtained by subsampling the original dataset to depths of 0.65×, 1×, 2×, 5×, and 10×, and analysis with ANGSD 
(Korneliussen et al., 2014) and ngsCovar (Fumagalli et al., 2014). Subspecific structure in the 0.65× data is much less distinct than in the full 
dataset, but is generally concordant with it. However, at higher read depths the clustering is clearly inconsistent with subspecies affiliation
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downstream analyses (Corlett, 2017; Johnson et al., 2016), but there 
are several good reasons why this can create more problems than 
it solves (Waples & Anderson, 2017). First, siblings occur naturally 
in all natural populations, at frequencies that are inversely related 
to effective population size; therefore, removing siblings erases sig-
nals characteristic of small populations and makes the populations 
appear to be larger. Second, removing individuals reduces sample 
size and decreases statistical power, perhaps greatly, so any benefits 
must be large to offset this cost. Third, methods for sibling inference 
are not infallible, so it is important to consider the consequences of 
imperfect pedigree reconstruction. At last, sibling removal cannot be 
used to convert a nonrandom sample into a random sample, unless 
one has independent information about the degree to which the pro-
portion of siblings in the sample exceeds the random expectation.

An alternative to removing individuals is to use a best linear unbi-
ased estimator approach (BLUE; McPeek, Wu, & Ober, 2004), which 
gives each individual a weight that reflects its degree of relatedness 
to others in the sample. As shown by Waples and Anderson (2017), 
however, performance of the BLUE also depends on having accurate 
pedigree information. When sample identification is not reliable, the 
use of the full dataset outperforms BLUE. Because of these poten-
tial adverse effects, researchers should be cautious about adjusting 
their datasets for putative siblings unless they have a good reason to 
believe that doing so will not actually make things worse.

3.2 | Effects of filtering on downstream analyses 
(Paul Hohenlohe and Tiago Antao)

Methods for producing reduced representation libraries, such as 
RAD-seq, are rapidly evolving, and more than 15 methods exist with 
variations in data quality, genotyping errors, cost, and the number 
of loci discovered (reviewed in Andrews, Good, Miller, Luikart, & 
Hohenlohe, 2016). Furthermore, filtering choices (see figure 2 in 
Benestan et al., 2016) can greatly influence downstream summary 
statistics. A recent study testing the impact of data processing on 
population genetic inferences using RAD-seq data observed large 
differences between reference-based and de novo approaches 
in population genetic summary statistics, particularly those based 
on the site frequency spectrum (Shafer et al., 2016). In addition, 
the recent debate over the effectiveness of RAD-seq for discov-
ering loci under selection (Catchen et al., 2017; Lowry et al., 2016; 
McKinney, Larson, Seeb, & Seeb, 2017) has highlighted the impor-
tance of testing the extent of linkage disequilibrium (LD) over the 
genome, whenever possible, in order to assess the power of genome 
scans to detect selected loci (e.g., Kardos, Taylor, Ellegren, Luikart, 
& Allendorf, 2016).

To further explore the impacts of filtering on downstream analy-
ses, students at ConGen used various minor allele frequencies (MAF; 
0.01, 0.05, 0.1, and 0.2) to filter a RAD-seq dataset and computed 
FST using the populations function in Stacks (Catchen, Hohenlohe, 
Bassham, Amores, & Cresko, 2013). Participants detected a gen-
eral trend of increasing estimates of genomewide mean FST with 
higher MAF thresholds. This may be the result of the relationship 

between expected heterozygosity and maximum possible FST at 
SNP loci; given the variation in FST across loci, a subsample of loci 
with lower MAF may be expected to have a lower maximum and 
therefore lower mean FST (Roesti, Salzburger, & Berner, 2012). Thus, 
some filtering by MAF can be used to remove sequencing errors and 
avoid bias in genome scans (Roesti et al., 2012) and may also remove 
rare alleles that are less informative for estimating FST. On the other 
hand, imposing MAF filters that are too strict (e.g., above 0.05 or 0.1) 
could skew metrics based on the site frequency spectrum or inad-
vertently remove loci under selection or with functional significance. 
As others have recommended, testing the effects of a range of ana-
lytical (filtering) parameters is critical to produce robust population 
genetic and demographic inferences (Mastretta-Yanes et al., 2014; 
Paris, Stevens, & Catchen, 2017; Shafer et al., 2016).

3.2.1 | Stringent filtering

The Anopheles gambiae 1,000 Genomes Project (Ag1000G) is a large-
scale project to sequence the main vector of malaria, mosquitoes 
(Anopheles gambiae; The Anopheles gambiae Genomes Consortium, 
2017), and it has conducted extensive empirical verification of error 
rates and filtering rules. Parents from different mosquito colonies 
were mated and produced ~19 offspring for each of four crosses. 
WGS of all individuals produced a minimum mean coverage of at 
least 14×. The error rate of SNP variant calling (inferred from par-
ent–offspring inheritance) without filtering was between 13.0% and 
21.7%. After filtering, the Mendelian error rate fell to 0.3%–0.9%. 
The filtering rules devised from this empirical dataset were then ap-
plied to the WGS analysis of 765 mosquitoes sampled across Africa. 
Not using any filtering with GATK would have produced 95,335,499 
SNPs, but with optimized filtering rules the number of SNPs fell to 
52,525,957 (see Supplementary material of The Anopheles gambiae 
Genomes Consortium (2017) for filtering parameters). Filtering pa-
rameters are dataset dependent and should be modified based on 
multiple criteria (e.g., depth of coverage, mapping quality, and strand 
bias) to reduce the number of false discoveries (see GATK forms on 
applying hard filters for detailed information).

3.3 | Retaining haplotypes in amplicon and RAD 
datasets (Eric Anderson)

Common approaches for dealing with multiple SNPs across an am-
plicon or RAD locus can result in low power or incorrect inference 
in subsequent analyses. When multiple SNPs are detected, these 
SNPs are handled as either unlinked (likely untrue) or only one of the 
SNPs is used in downstream analyses. However, retaining each hap-
lotypic combination as an allele can increase power for relationship 
inference and pedigree reconstruction (Baetscher, Clemento, Ng, 
Anderson, & Garza, 2017). Further, haplotype calling allows for the 
retention of low-frequency variants, which may be useful for popu-
lation structure assessment in recently diverged populations. Rare 
alleles (or haplotypes) reveal recombination events that generated 
alternative sequences of ancestry and thereby identify fine-scale 
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structure that would be missed when using independent marker ap-
proaches (Lawson, Hellenthal, Myers, & Falush, 2012).

The software microhaplot (https://github.com/ngthomas/mi-
crohaplot) takes a variant file and designates nucleotides that occur 
together on the same read as “microhaplotypes” and allows for the 
visualization, filtering, and exporting of the data. The Stacks software 
package (Catchen et al., 2013) can also export multi-SNP haplotypes 
from RAD-seq data. Unlike single SNP assays, the microhaplotype 
data collection method uses assays designed with multi-allelic loci 
and can yield useful data for nontarget species phylogenies and for 
genealogical inference (Sunnucks, 2000).

3.4 | Draft genomes to improve data analyses (Ben 
Koop)

Some molecular biologists have claimed that we are in the post-
genomic era (Wu, 2001); however, only a very small proportion 
of reference genomes are assembled to the chromosomal level. 
Despite this, having even a draft genome (in 1000s of scaffolds) 
can help improve data analyses in many ways including the follow-
ing: (a) reliable discovery of SNPs (e.g., avoiding duplicated loci), (b) 
reducing genotyping error rates (Hand et al., 2015; Shafer et al., 
2016), (c) detecting loci under selection by allowing sliding-window 
approaches along scaffolds (Hohenlohe, Phillips, & Cresko, 2010), 
and (d) finding the underlying genes associated with phenotype 
or adaptation (facilitated by mapping scaffolds to related species 
with well-annotated genomes; e.g., Ekblom & Wolf, 2014; Kohn, 
Murphy, Ostrander, & Wayne, 2006; McKinney et al., 2016). In 
addition, it is possible with this information to estimate effective 
population size (Ne; e.g., Li & Durbin, 2011) or effective number of 
breeders (Nb) using LD-based methods, as comparisons can be re-
stricted to pairs of loci on different scaffolds, which should reduce 
or eliminate LD due to physical linkage. Depending on the genome 
size and complexity, an investment of $10k to $20k could achieve 
a useful reference genome with an N50 of ~100 kbp, which can 
be sufficient to improve data analysis as mentioned above (see 
Goodwin, McPherson, & McCombie, 2016) for costs per Gb for 
various sequencing platforms). Furthermore, the reference as-
sembly could likely be provided by a commercial company (e.g., 
DoveTail, https://dovetailgenomics.com/) for this price, as long as 
the genome is not too large (≫3 GB) or complex (e.g., duplicated, 
numerous repeats), and if the initial DNA is of high molecular 
weight (many fragments >15–20 kb).

There are a growing number of approaches for genome assembly 
using “single molecule real-time” sequencing (SMRT-seq) or “syn-
thetic long-read” sequencing (SLR-seq) technology (Fuentes-Pardo 
& Ruzzante, 2017; Goodwin et al., 2016). The SMRT-seq technology 
offered by PacBio (http://www.pacb.com/) produces read lengths of 
~10 kbp (some >60 kbp). Oxford Nanopore (https://nanoporetech.
com/) and minION also use a single molecule approach to nucleo-
tide identification that passes an ionic charge through a nanoscale 
hole and measures the changes in current as each molecule passes 
through (see Michael et al. (2017) for assembly comparison). SLR-seq 

technologies, such as 10× Genomics (https://www.10xgenomics.
com/) or Dovetail Genomics (https://dovetailgenomics.com/), still 
rely on short read technology and, using statistical phasing algo-
rithms, have the capacity to assemble continuous haplotypes and 
scaffolds that can span whole chromosomes with high accuracy.

While the per sample cost of WGS is still relatively high, the per 
locus cost is low compared to reduced representation library costs 
(see table 1 in Oyler-McCance, Oh, Langin, & Aldridge, 2016). A 
greater proportion of positions within the genome are covered with 
WGS, which lowers the per base sequencing costs, but increases the 
costs per individual. With sequencing prices still falling, it is becom-
ing more likely that most ecologists and evolutionary biologists will 
have access to genome assemblies for their study species (or sister 
taxa) in the near future (Ellegren, 2014).

3.5 | Experimental design: which method to choose 
(Paul Hohenlohe)

The diversity of options for experimental design of population 
genomic studies continues to expand as sequencing costs continue 
to drop and new technologies emerge. As discussed in previous 
ConGen workshops (Benestan et al., 2016), a general guideline is to 
consider carefully the biological question, and the downstream anal-
yses and statistical power that will be required to most efficiently 
address it. This should guide all aspects of experimental design, in-
cluding the genomic approach, type of genetic markers, number of 
markers, sequencing depth, number of individuals and populations 
sampled, spatial distribution of individuals, and tissue type (for tran-
scriptome sequencing). For all of these factors, there is a wide range 
of options for most population genomic studies, as well as trade-offs 
among methods and sampling approaches that are important to con-
sider (Andrews et al., 2016; Benestan et al., 2016).

Focusing on the choice of sequencing method, a particular point 
of discussion at the ConGen 2017 workshop was the recent set of 
papers addressing the limitations of RADseq to illuminate the ge-
netic basis of adaptation (Catchen et al., 2017; Lowry et al., 2016; 
McKinney et al., 2017). The primary criticism raised by Lowry et al. 
(2016) is that RAD loci, depending on the choice of restriction en-
zyme(s) and the specific protocol used (Andrews et al., 2016), may 
be sparsely distributed across the genome, so that selected loci may 
lie some distance away from the nearest genotyped RAD marker. By 
definition, all reduced representation approaches face this issue, al-
though RADseq approaches are more limited than other techniques 
(such as sequence capture) in their ability to specifically target pre-
viously identified candidate loci. In a RADseq study (and most other 
marker-based population genomic studies), the key factor is linkage 
disequilibrium (LD), which determines the extent to which geno-
types at a genetic marker are correlated with those of a functionally 
important locus, and therefore, the signal of selection that can be 
detected from marker data.

If the scale of LD is larger than the distance between markers, 
a RAD-seq study has a high probability of identifying functionally 
important loci across the genome. The extent of LD can be directly 

https://github.com/ngthomas/microhaplot
https://github.com/ngthomas/microhaplot
https://dovetailgenomics.com/
http://www.pacb.com/
https://nanoporetech.com/
https://nanoporetech.com/
https://www.10xgenomics.com/
https://www.10xgenomics.com/
https://dovetailgenomics.com/
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estimated if a reference genome is available (Catchen et al., 2017), 
and it is recommended that LD should be estimated whenever possi-
ble in population genomic studies. Moreover, many conservation and 
population genomic questions can be answered without exhaustive 
sampling of the genome or detection of all functionally important 
loci, and alternative techniques such as WGS may impose substan-
tial costs and other trade-offs (Catchen et al., 2017). In particular, 
increasing the density of markers may necessitate reducing the 
number of individuals or populations sampled, and choosing meth-
ods that target candidate loci can bias against detecting selection at 
previously unknown loci. Overall, there is no universally applicable 
genomic method, and the biological question and details of the study 
system should drive the choice of technique.

4  | IMPROVING DOWNSTRE AM 
COMPUTATIONAL ANALYSES

4.1 | Genomic analysis of inbreeding and 
demographic history (Marty Kardos)

In a traditional manner, individual inbreeding has been measured with 
the pedigree inbreeding coefficient (FP) via path analysis (Pemberton, 
2008). More recently, large numbers of genetic markers (Berenos, 
Ellis, Pilkington, & Pemberton, 2016; Hoffman et al., 2014; Huisman, 
Kruuk, Ellis, Clutton-Brock, & Pemberton, 2016) and whole-genome 
sequences (Kardos et al., 2018; Palkopoulou et al., 2015; Xue et al., 
2015) have been used to estimate individual inbreeding directly from 
the genome by analyzing parameters like multiple-locus heterozygo-
sity, genomic relatedness matrices, and Runs Of Homozygosity (ROH; 
Kardos et al., 2016). Genomic approaches capture variation in realized 
inbreeding that is missed by pedigree analysis due to the stochastic ef-
fects of linkage and unknown common ancestors of parents (Franklin, 
1977; Thompson, 2013). Thus, while deep and accurate pedigrees can 
often precisely measure individual inbreeding in species with many 
chromosomes and/or high recombination rates (Kardos et al., 2018; 
Knief, Kempenaers, & Forstmeier, 2017; Nietlisbach et al., 2017), 
genomic approaches are expected to more reliably measure inbreed-
ing and inbreeding depression (Kardos, Luikart, & Allendorf, 2015a; 
Kardos et al., 2018; Keller, Visscher, & Goddard, 2011; Wang, 2016). 
Given that many studies have used only shallow pedigrees or few 
DNA markers, it is possible that power to detect inbreeding depres-
sion has been low; therefore, inbreeding depression could be more 
common, widespread, and severe than previously thought.

Analyses of ROH can also be used to understand the genetic basis 
of inbreeding depression. Candidate regions for loci contributing to 
inbreeding depression can be identified as chromosome segments 
containing fewer ROH in a sample of individuals than expected by 
chance (Kardos et al., 2018; Pemberton et al., 2012). Homozygosity 
mapping (Charlier et al., 2008) and association analyses based on 
the correlation of phenotype with the presence/absence of ROH in 
particular genome regions (Keller et al., 2012; Pryce, Haile-Mariam, 
Goddard, & Hayes, 2014) can be used to identify loci affecting in-
breeding depression. Genomic approaches have the potential to 

greatly advance our understanding of the strength and genetic basis 
of inbreeding depression in natural populations.

Analyses of identity-by-descent (IBD) can also be used to infer 
historical effective population size (Ne). Differences in historical Ne 
among populations can be qualitatively inferred by analyzing the abun-
dance of ROH. The abundance of very short ROH is informative of Ne 
in distant history, while long ROH is informative of more recent Ne 
(Kardos, Qvarnström, & Ellegren, 2017; Kirin et al., 2010; Pemberton 
et al., 2012). A limitation of this approach is that it is only qualitative 
and requires data on multiple populations to be informative.

A particularly exciting new approach for studies of recent de-
mographic history in natural populations is to explicitly estimate a 
time series of recent Ne using inference of IBD. The program IBDSeq 
(Browning & Browning, 2013) searches the genomes of all pairs of 
individuals to identify chromosome segments of shared ancestry 
between individuals. The program IBDNe (Browning & Browning, 
2015) then uses the inferred pairwise IBD segments to find the most 
likely recent time series of Ne given the IBD data. A limitation of this 
approach for most natural populations is that it requires a minimum 
of approximately 100 individuals and the genetic mapping locations 
(i.e., on a linkage map) of at least several hundred thousand SNPs 
(Browning & Browning, 2015). However, the approach has great 
potential to infer recent demographic history (i.e., to test for and 
quantify recent population bottlenecks and expansions) in natural 
populations where it would be difficult or impossible to evaluate re-
cent Ne otherwise (Kardos et al., 2017).

4.2 | Genomewide association studies (Marty 
Kardos)

Genomewide association studies (GWAS) have recently identified 
loci with large effects on several ecologically important phenotypic 
traits. For example, single loci have explained a large fraction of 
the variance in age of maturation in Atlantic salmon (Barson et al., 
2015) and horn development in free-ranging Soay sheep (Johnston 
et al., 2011, 2013). In an intelligible manner, some traits are governed 
largely by variation at individual loci, but these are likely rare among 
all traits of interest to evolutionary biologists. Many adaptive traits 
are likely driven by a large number of loci with small effect sizes, low 
minor allele frequency, and/or epistatic interactions (Visscher et al., 
2017). GWAS of complex traits will therefore often fail to identify 
enough genotype–phenotype associations to explain a useful frac-
tion of the heritability of traits of interest. This is particularly true 
of studies on populations with very large Ne or high recombination 
rates where strong linkage disequilibrium (LD) extends only very 
short distances from the genotyped loci, or where relatively few loci 
are analyzed, thus resulting in low power to detect loci even with 
relatively large phenotypic effects (Kardos et al., 2015b). However, 
encouraging for studies in small or fragmented populations, the 
power to detect large effect quantitative trait loci (QTL) is expected 
to be higher in populations with small Ne because strong LD extends 
over longer chromosomal distances in such populations. Therefore, 
the design and interpretation of GWAS are greatly improved by 
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evaluating the extent of strong LD and the power to detect large 
effect QTL.

By good fortune, GWAS failing to explain a large fraction of the 
heritability in loci with statistically significant genotype–phenotype 
associations are still highly useful. It is arguably more important in 
ecological and conservation genetics to understand the heritability 
of a trait than to identify some of the loci responsible for heritable 
variation in the trait, as it is the heritability of a trait that determines 
the magnitude of the expected response to selection. The additive 
genetic variance and heritability can readily be estimated using lin-
ear mixed effects models (Rönnegård et al., 2016; Santure et al., 
2013; Yang, Lee, Goddard, & Visscher, 2011) in GWAS, even in cases 
where no individual loci pass the stringent thresholds of statistical 
significance. In addition, heritability can be partitioned among chro-
mosomes to determine whether the trait of interest is likely to be 
polygenic (i.e., affected by a very large number of loci), in which case 
chromosome-specific heritability is expected to increase with the 
number of genes on a chromosome (Santure et al., 2013).

Participants at ConGen used the R package, RepeatABEL 
(Rönnegård et al., 2016), to test for loci associated with clutch size 
using previously published data from a long-term study of collared 
flycatchers (Ficedula albicollis; Husby et al., 2015). This helped to fa-
miliarize students with data structures, available software, and inter-
pretation of results from GWAS. In addition, analyzing the collared 
flycatcher data allowed students to consider the importance of ac-
counting for repeated phenotypic measurements when conducting 
a GWAS. Students were encouraged to critically evaluate effect size 
estimates from GWAS in light of the Beavis effect (Beavis, 1998), 
and the “winner’s curse” (Kraft, 2008), which state that the effect 
sizes of loci passing a stringent statistical significance thresholds in 
QTL mapping or GWAS analyses are often upwardly biased, particu-
larly in studies with low statistical power.

4.3 | Landscape genomics (Brenna Forester)

Landscape genomics is an emerging analytical framework that investi-
gates how environmental and spatial processes structure the amount 
and distribution of neutral and adaptive genetic variation among pop-
ulations (Balkenhol et al., 2017). Landscape genomics is sometimes 
conflated with genotype–environment association (GEA) analysis, 
which includes a wide variety of statistical approaches for identify-
ing candidate adaptive loci that covary with environmental predictors 
(Rellstab, Gugerli, Eckert, Hancock, & Holderegger, 2015). However, 
landscape genomics includes many other techniques for identifying 
and analyzing spatially structured, selection-driven variation, including 
GWAS across multiple environments, simulation studies, experimental 
approaches such as environmentally stratified common gardens, epi-
genetic and transcriptomic studies, and innovative approaches that 
combine analytical techniques (Berg & Coop, 2014; Lasky, Forester, & 
Reimherr, 2018; Storfer, Antolin, Manel, Epperson, & Scribner, 2015).

Most importantly, landscape genomics is not just the application 
of these statistical techniques to identify candidate adaptive variation, 
but is an approach with a developing theoretical framework linking 

genomic variation, spatial complexity, environmental heterogeneity, 
and evolutionary processes (Balkenhol, Cushman, Waits, & Storfer, 
2015). The wide range of ecological and evolutionary questions and 
management issues that can be addressed through this framework 
was highlighted with recent published examples (Brauer, Hammer, & 
Beheregaray, 2016; Creech et al., 2017; Lasky et al., 2015; Manthey & 
Moyle, 2015; Razgour et al., 2017; Swaegers et al., 2015).

With this introduction to landscape genomics, ConGen partic-
ipants worked on applications of GEA analysis, currently the most 
widely used landscape genomic technique (Balkenhol et al., 2017). 
The reasons for the popularity of GEA analyses are practical: They 
require no phenotypic data or prior genomic resources, do not re-
quire experimental approaches (such as reciprocal transplants) to 
demonstrate local adaptation, and are often more powerful than 
differentiation-based outlier detection methods (De Mita et al., 
2013; de Villemereuil, Frichot, Bazin, François, & Gaggiotti, 2014; 
Forester, Lasky, Wagner, & Urban, 2018; Lotterhos & Whitlock, 
2015). In particular, participants considered how and why detection 
rates differed between univariate and multivariate GEAs, exploring 
the use of latent factor mixed models (Frichot, Schoville, Bouchard, 
& Francois, 2013) and redundancy analysis (Forester, Jones, Joost, 
Landguth, & Lasky, 2016; Lasky et al., 2012), respectively. Recent 
work has shown that RDA is an effective means of detecting adap-
tive processes that result in weak, multilocus molecular signatures 
(Forester et al., 2018), providing a powerful tool for investigating the 
genetic basis of local adaptation and informing management actions 
to conserve evolutionary potential (Flanagan et al., 2017; Harrisson 
et al., 2014; Hoffmann et al., 2015). Finally, participants were en-
couraged to move beyond simply documenting candidate adaptive 
loci in their datasets, and instead focus on the ecological, evolution-
ary, and management-relevant questions that can be addressed by 
more fully integrating a landscape genomic analytical framework.

4.4 | Ancestral demography with migration (Arun 
Sethuraman)

Estimation of ancestral demography, particularly under an Isolation 
with Migration (IM) model (Nielsen, 2001), is useful for many molec-
ular ecologists and conservation geneticists. A prominent set of tools 
for this analysis includes IM, IMa, IMa2, and IMa2p (Hey, 2010; Hey, 
Chung, & Sethuraman, 2015; Hey & Nielsen, 2007; Sethuraman & 
Hey, 2015). In general, these methods utilize a Bayesian Metropolis-
coupled Markov Chain Monte Carlo (MCMCMC) method to estimate 
effective population sizes, migration rates, and divergence times 
under the IM model from haplotypic data. In its latest edition, IMa2p 
offers parallelized estimation under this framework, providing al-
most linear improvement in computational time by increasing the 
number of processors utilized. This in turn allows the analyses of a 
large number of genomic loci to estimate demographic history, a task 
that was previously intractable owing to computational overhead. 
These tools assume that genomic loci are independent, freely re-
combining between loci, nonrecombining within loci, and putatively 
neutral (summarized in Strasburg & Rieseberg, 2010). When datasets 
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fit these assumptions, the methods give robust results (summarized 
in Sousa & Hey, 2013). As of late, Hey et al. (2015) simulated data 
where the number of loci sampled was small and exhibited very low 
divergence between populations to detect an excess of false posi-
tive for the presence of migration (also described in Cruickshank & 
Hahn, 2014). This study points to high false-positive rates for detect-
ing migration using likelihood ratio tests while using the IM suite of 
tools on data that show low divergence (i.e., very low FST), and while 
using a small number of loci. In addition, much like other MCMC 
methods (e.g., STRUCTURE; Pritchard, Stephens, & Donnelly, 2000), 
the length of a “run” of the IM tool used is paramount (longer and 
many duplicate runs preferred) in ensuring mixing, convergence, and 
adequate sampling of genealogies.

Recent studies that have estimated demography under the IM 
model as applied to conservation include McKelvy and Burbrink 
(2017) that tests 24 nested models of evolution and species delinea-
tion across the North American range of the yellow-bellied kingsnake 
(Lampropeltis calligaster), and Vázquez-Miranda et al. (2017) study of 
Le Conte’s thrashers (Toxostoma lecontei) in estimating negligible mi-
gration among subspecies to recommend conservation status across 
their Western North American range. Other tools to test complex de-
mographic models using genomic data include coalescent simulation-
based methods (e.g., FASTSIMCOAL; Excoffier & Foll, 2011; Excoffier, 
Dupanloup, Huerta-Sánchez, Sousa, & Foll, 2013), Approximate 
Bayesian Computation (ABC; Beaumont, Zhang, & Balding, 2002; 
Robinson, Bunnefeld, Hearn, Stone, & Hickerson, 2014)-based meth-
ods that compare summary statistic distributions in simulated ver-
sus observed populations, and diffusion approximations to the joint 
allele frequency spectrum for demographic inference (e.g., ∂a∂i, 
Gutenkunst, Hernandez, Williamson, & Bustamante, 2009). In general, 
model-based estimation of evolutionary demographic history (both 
ancient and recent) when applied in combination with summary pop-
ulation genetic statistics as described above (including FST, inbreed-
ing coefficients, and homozygosity), and non-model-based methods 
(including STRUCTURE and ADMIXTURE; Alexander, Novembre, & 
Lange, 2009; Pritchard et al., 2000) can prove to be useful means to 
bridge genomics and conservation in particular.

5  | BROAD RECOMMENDATIONS AND 
CONCLUSIONS

Common advice among instructors was to gain extensive experi-
ence in computer programming. Students were encouraged to seek 
out online resources and to work in interdisciplinary teams, where 
through mentorship and close collaboration they can learn the ba-
sics in an applied setting. A key theme was the importance of contin-
uing to develop and teach programming at all levels (e.g., elementary 
through graduate), with a specific focus on better integrating bio-
informatics instruction into undergraduate life sciences education.

The advent of “big data” presents a critical challenge in the fields 
of population and conservation genomics. Interdisciplinary collab-
oration is a key as it becomes more difficult for researchers to be 

experts in both data production (e.g., field work, biological sampling) 
and bioinformatics or mathematical modeling. Koop acknowledges 
that he fills his team with bioinformaticians as well as biologists, but 
“when you find the rare individual who understands both the popu-
lation genomics and the bioinformatics, you do everything you can to 
hold onto them.” Furthermore, the “Ten Simple Rules for a Successful 
Cross Disciplinary Collaboration” by Knapp et al. (2015) is a useful 
resource for gaining skills for a successful, synergistic collaboration.

In conclusion, the genomic era presents both new data analy-
sis challenges and opportunities to visualize, understand, and apply 
population genomic data to conservation in novel ways. Here, we 
emphasize producing and visualizing erroneous datasets, possible 
effects of filtering on downstream analyses, and how to improve 
downstream computational analyses to prevent drawing erroneous 
conclusions. The experts at ConGen instructed students to under-
stand and use reliable biological models and to develop clear ques-
tions and hypotheses rooted in evolutionary and ecological theory. 
In summary, ConGen and this article present problems and solutions 
with the goal of improving the use of genomics in the fields of popu-
lation genomics, molecular ecology, and conservation biology.
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