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ABSTRACT

Aim Species distribution models (SDMs) are commonly used to forecast

climate change impacts. These models, however, are subject to important

assumptions and limitations. By integrating two independent but complemen-

tary methods, ensemble SDMs and statistical phylogeography, we addressed

key assumptions and created robust assessments of climate change impacts on

species distributions while improving the conservation value of these

projections.

Location North American cordillera.

Methods This approach was demonstrated using the arctic-alpine plant Rhodiola

integrifolia (Crassulaceae). SDMs were fitted to current and past climates using

eight models, two thresholds and one to three climate data sets. These projections

were combined to create a map of stable climate (refugia) since the Last Intergla-

cial (124,000 kya). Five biogeographic hypotheses were developed based on the

configuration of refugia and tested using statistical phylogeography. Projection of

SDMs into the future was contingent on agreement across approaches; future

projections (to 2085) used five climate data sets and two greenhouse gas

scenarios.

Results A multiple-refugia hypothesis was supported by both methods, con-

firming the assumption of niche conservatism in R. integrifolia and justifying

the projection of SDMs onto future climates. Future projections showed sub-

stantial loss of climatically suitable habitat. Southern populations had the great-

est losses, although the biogeographic scale of modelling may overpredict

extinction risks in areas of topographic complexity. Past and future SDMs were

assessed for novel values of climate variables; areas of novel climate were

flagged as having higher uncertainty.

Main conclusions Integrating molecular approaches with spatial analyses of

species distributions under global change has great potential to improve conser-

vation decision-making. Molecular tools can support and improve current

methods for understanding the vulnerability of species to climate change and

provide additional data upon which to base conservation decisions, such as pri-

oritizing the conservation of areas of high genetic diversity to build evolution-

ary resiliency within populations.
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INTRODUCTION

Anthropogenic climate change is impacting ecosystems

world-wide, generating a global signal of climate-induced

range shifts and phenological responses crossing all ecosys-

tems and taxonomic groups (Chen et al., 2011). Forecasting

impacts on species distributions has important conservation

implications, as scientists and managers try to determine the

best strategies for preserving habitat for imperilled species

and maintaining ecosystem functioning. Species distribution

models (SDMs) have become one of the most widely used

tools to develop these forecasts. SDMs have many limita-

tions, however, including difficulty handling historical

demographic signals, biotic interactions and changing combi-

nations of climate variables, as well as theoretical assump-

tions, such as species–climate equilibrium and niche

conservatism (Jackson et al., 2009; Wiens et al., 2009).

Furthermore, SDMs provide only a starting point for under-

standing species responses to climate change and planning

adaptive management strategies to conserve biodiversity

(Franklin, 2010; Dawson et al., 2011).

One proposal for the improvement of SDMs is to integrate

phylogeography (Scoble & Lowe, 2010), which examines the

current geographic distribution of genetic variation within

and between populations to infer demographic history and

how palaeoclimatic events have impacted population diver-

gence (Avise, 2000). Phylogeography is most often used to

determine the impact of Pleistocene glacial cycles on genetic

variation within species or among groups of species, includ-

ing the identification of migration barriers and long-term

refugia. Phylogeographers have started using SDMs to

develop spatially explicit biogeographic hypotheses that can

be tested using statistical phylogeographic methods (Richards

et al., 2007). The outcome of these efforts includes an

improved understanding of the mechanisms creating patterns

of biodiversity, as well as the patterns and timing of

divergence and speciation events (Chan et al., 2011).

Ecologists looking to model future impacts of climate

change on species distributions can integrate phylogeography

to address one of the fundamental assumptions of projecting

SDMs: niche conservatism, or the tendency of a species to

retain its climatic niche over time (Wiens et al., 2010).

Because SDMs are built using the climatic niche defined by

the present distribution of a species, projecting that niche

onto palaeoclimate data indicates where the species would

have been distributed in the past given no change in its cli-

matic niche (i.e. assuming niche conservatism). An indepen-

dent data source, such as a fossil record or phylogeographic

data that shows a similar palaeodistribution argues in favour

of niche conservatism for that species. A mismatch may indi-

cate niche evolution, barriers to dispersal or errors in the

modelling process. Additionally, phylogeography allows for

the detection of refugia and past barriers to dispersal which

have important conservation applications. Long-term refugia

tend to maintain high levels of allelic diversity (Keppel et al.,

2012), while past barriers can result in suture zones, which

support diversification and speciation (Hewitt, 1996). Includ-

ing these locations in conservation planning can help build

evolutionary resiliency within populations, mediating

extinction risks (Sgro et al., 2011).

Only a few studies have used the combination of SDMs

and phylogeography to both understand the impact of palae-

oclimatic events on species distributions and assess future

climate change impacts (Cordellier & Pfenninger, 2009; Gal-

breath et al., 2009). These authors typically employ accessible

and user-friendly approaches to SDMs, such as Maxent mod-

elling software (Phillips & Dudik, 2008) and interpolated cli-

mate data from WorldClim (Hijmans et al., 2005). However,

the growing literature devoted to improving SDMs has indi-

cated that the two greatest sources of uncertainty in SDM

projections are the choice of model algorithm and the

general circulation model (GCM) used for climate forecast-

ing (Diniz-Filho et al., 2009; Buisson et al., 2010). For this

reason, the use of a single model algorithm and a single

GCM to project changes in species distributions has been

criticized (Nogu�es-Bravo, 2009).

A recent approach to addressing this uncertainty is ensemble

modelling combined with consensus projections. Ensemble

modelling is based on the idea that different combinations of

initial conditions, model algorithms and GCMs represent

alternate possible states of the system being modelled (Ara�ujo

& New, 2007). When these are combined using consensus

methods (such as the mean of all models), they can form a

more accurate projection, outperforming single models

(Marmion et al., 2009; Grenouillet et al., 2011). This assumes

that the included models meet some standard of ‘good’ perfor-

mance, because increased accuracy would not be expected sim-

ply by combining poor models (Ara�ujo et al., 2005). Ensemble

modelling and consensus projections are particularly well sui-

ted to temporal and spatial projection of SDMs. Research has

indicated that single models that have the best performance on

current data will not necessarily provide the most accurate

future projections, and that consensus projections can more

effectively model observed range shifts (Thuiller, 2004; Ara�ujo

et al., 2005). Furthermore, some algorithms are better at

extrapolation modelling, where variables are outside the range

used to build the models (Marmion et al., 2009; Heikkinen

et al., 2012). While projection of SDMs onto these ‘novel cli-

mates’ is discouraged (Fitzpatrick & Hargrove, 2009; Elith

et al., 2010), it is usually unavoidable because novel combina-

tions of temperature and precipitation are highly likely over

forecast periods (~100 years) on the spatial scale of most SDM

studies (Williams et al., 2007). Detecting areas of non-

analogue climates and indicating larger levels of uncertainty in

those areas is essential to producing robust projections of

climate change impacts.

In this study, we combined ensemble modelling and con-

sensus projections with statistical phylogeographic analyses

to assess past and future climate change impacts on the geo-

graphic distribution of an arctic-alpine plant, Rhodiola integ-

rifolia Raf. (Crassulaceae). This species, which includes a

relict subspecies listed as threatened under the U.S.
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Endangered Species Act, has been the subject of a recent phy-

logeographic analysis indicating the presence of cryptic species

lineages (E.G. DeChaine & B.R. Forester, unpublished data).

Determining how past climate change has influenced the

diversification of these lineages can help us understand how

anthropogenic climate change will impact their persistence.

Our objectives were: (1) to develop a model of climatically

stable refugial areas in western North America for R. integri-

folia over the last 124 kya (kya, thousand years ago), (2) to

evaluate the level of agreement between the SDM refugial

model and empirical genetic data using a statistical phyloge-

ographic approach, and (3) assuming agreement between the

SDMs and phylogeographic analyses, to assess the impact of

future climate change scenarios on the geographic distribu-

tion of climatically suitable habitat for R. integrifolia in

western North America.

METHODS

Study species and occurrence records

Rhodiola integrifolia, roseroot or king’s crown, is a perennial

arctic-alpine succulent characteristic of wet meadows and

rocky slopes with a widespread, patchy distribution at high

altitudes and latitudes throughout the North American

cordillera (see Fig. S2, in Supporting Information). It repro-

duces by wind-dispersed seeds and also propagates vegeta-

tively at the root stock, indicating either widespread or

limited dispersal, respectively (Clausen, 1975). A recent anal-

ysis showed a deep divergence between two phylogenetic

clades dating to ~700 kya (E.G. DeChaine & B.R. Forester,

unpublished data). The Beringian clade ranges from arctic

Alaska south to the Sierra Nevada and the Central Rocky

Mountains and includes microenvironments in the north-

east, while the Rocky Mountain clade is based solely in the

Southern Rocky Mountains. In this analysis, we focused on

the larger of the clades (the Beringian), excluding R. integri-

folia ssp. leedyi, whose confinement to microclimate refugia

in the north-east makes its inclusion inappropriate for the

spatial scale of this analysis. Occurrence records for R. integ-

rifolia and its taxonomic synonyms were collected from

online herbaria; georeferencing was evaluated for accuracy.

Scaling, climate data and predictor variables

The spatial extent of analysis was 30°N to 80°N and 99°W to

180°W. This includes the entire latitudinal distribution of

R. integrifolia and a large part of its longitudinal distribution,

an important means of minimizing bias in model projections

(Barbet-Massin et al., 2010). Palaeodistributions were created

for the Mid-Holocene (6 kya), the Last Glacial Maximum

(LGM, 21 kya), and the Last Interglacial (LIG, 124 kya).

Current distributions were based on mean climatology from

1971 to 2000. Future distributions were based on mean cli-

mate values projected for 2071–2100 (hereafter referred to as

‘2085’) under two greenhouse gas scenarios (A1B and A2).

Eight climate models were used (Table 1). Data from GCMs

were interpolated to 0.5° using ordinary cokriging in Arc-

Map (Environmental Systems Resource Institute (ESRI),

2010). Sixty predictor variables were calculated; the most rel-

evant were identified using the randomForest package (Liaw

& Wiener, 2002) in R (R Development Core Team, 2012)

and a modified approach from Strobl et al. (2008). Methods

for climate data processing and variable calculation and

selection are provided in Appendix S1.

Species distribution modelling and evaluation

Modelling was conducted using the BIOMOD package

(Thuiller et al., 2009) in R and Maxent, v. 3.3.3 (Phillips

et al., 2006; Phillips & Dudik, 2008). Nine algorithms were

run: generalized linear models (GLM), generalized additive

models (GAM), multivariate adaptive regression splines

(MARS), classification tree analysis (CTA), flexible discrimi-

nant analysis (FDA), artificial neural networks (ANN),

Table 1 Climate data used to model the distribution of suitable

habitat for Rhodiola integrifolia; kya = thousand years ago.

Time period Model References Source

Current

(1971–2000)

CRU TS 2.1 Mitchell &

Jones (2005)

University of

East Anglia

Climatic

Research Unit

Mid-Holocene

(6 kya)

CCSM 3 Otto-Bliesner

et al. (2006)

Paleoclimate

Modelling

Intercomparison

Project Phase 2

(Braconnot

et al., 2007)

HadCM3

UBRIS

Gordon

et al. (2000)

MIROC 3.2 K-1 model

developers

et al. (2004)

Last Glacial

Maximum

(21 kya)

CCSM 3 Otto-Bliesner

et al. (2006)

HadCM3 Gordon

et al. (2000)

MIROC 3.2 K-1 model

developers

et al. (2004)

Last

Interglacial

(124 kya)

HadCM3 Gordon

et al. (2000)

Bristol Research

Initiative for the

Dynamic Global

Environment

Future

(2071–2100)

BCCR BCM 2.0 www.bjerknes.

uib.no

Coupled Model

Intercomparison

Project Phase 3

(Meehl et al.,

2007)

World Data

Center for

Climate,

Hamburg,

Germany

CSIRO Mk3.5 Gordon

et al. (2002)

HadGEM1 Johns

et al. (2006)

IPSL CM4 Marti

et al. (2009)

MIROC 3.2 K-1 model

developers

et al. (2004)
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generalized boosted models (GBM), random forest (RF) and

maximum entropy (MAX). Model parameterizations are pro-

vided in Appendix S2.

One presence record per pixel was used for a total of 269

records (Fig. 1a). The entire background of the study area

was used to create pseudo-absence points (Fig. 1b), ensuring

complete sampling of environmental conditions and

minimizing extrapolation when projecting onto different

climates. Background records were weighted to maintain

equal prevalence; this has been found to maximize model

performance (Barbet-Massin et al., 2012). Data partitioning

(70% training, 30% verification) was used to assess model

stability and sensitivity to initial conditions because indepen-

dent data were not available. Ten partitions were run for each

model using random selections with replacement (Fig. 1e).

Final consensus models were built using 100% of the available

MAX

Current
Climate

(c) Predictor variables (n = 8)

(a) Occurrence records (n = 269)

GAM

GLM

CTA

RF

(d) Model
algorithms

        (n = 8)

(f) Current and paleo
consensus projections

(h) Statistical phylogeographic
hypothesis testing

(i) Future consensus projections

(g) Potential refugia

Last interglacial
124,000 ybp

Mid-Holocene
6000 ybp

3 GCMs

3 GCMs

Last glacial
maximum
21,000 ybp

FDA

(b) Pseudoabsences (n = 6539)

(e) Model
calibration

and verificaion

A2 scenario
2085

5 GCMs

A2 scenario
2085

A1B scenario
2085

A1B scenario
2085

5 GCMs

GBM

If genetic data supports
single refugium or
panmixia models

investigate dispersal barriers
or lack of niche conservatism.
Also check models for errors.

If genetic data supports
multiple refugia model

project models onto
future climate.

See Figure S1
for details on

ensemble methods 
for the refugial map

Single refugium (N & S)

Panmixia

Multiple refugia

Figure 1 Methods for ensemble species distribution modelling of refugial areas for Rhodiola integrifolia since the Last Interglacial (a–g);
use of the refugial model to develop biogeographic hypotheses for phylogeographic analysis (h); projection of verified models onto

future climate, using an ensemble of general circulation models (GCMs) (i).

Diversity and Distributions, 19, 1480–1495, ª 2013 John Wiley & Sons Ltd 1483

Ensemble SDMs, statistical phylogeography & climate change



data, because the removal of presence records has a negative

effect on model projections (Ara�ujo et al., 2005).

The area under the curve of the receiver operating charac-

teristic (AUC, Fielding & Bell, 1997) and sensitivity were

used to assess model accuracy and stability (see Appendix S2

for details). Evaluation statistics were averaged across ten

cross-validation runs. Models with mean AUC and mean

sensitivity > 0.7 were determined to be useful and were kept

in the consensus analysis (Fig. 1d,e).

Palaeodistributions and the refugial model

Models for R. integrifolia were projected onto current and past

climates (Fig. 1f). To assess suitable habitat across time, proba-

bilistic output was converted to presence/absence using two

thresholds: minimizing the absolute value of sensitivity minus

specificity (minSeSp), and taking the mean probability value

across model output (mean). Both of these methods perform

well in threshold comparisons (Liu et al., 2005). For the current

and LIG, this resulted in 16 models each: eight algorithms (one

algorithm was discarded, see Results) using two thresholds. For

the Mid-Holocene and LGM, this produced 48 models each:

eight algorithms using two thresholds for three GCMs.

Refugia are defined as pixels that are classified as suitable

habitat across all four time periods. For each time slice, indi-

vidual models were combined to create one map showing

the percentage of models indicating presence of suitable hab-

itat in each pixel based on four thresholds: 30, 50, 70 and

90% probability of suitable habitat. Each pixel was assessed

for agreement across the four time slices at each threshold,

resulting in a final consensus refugial map indicating pixels

classified as suitable habitat across all four time slices

(a schematic of these methods is provided in Fig. S1). The

LGM ice layer (Dyke et al., 2003) was overlaid to exclude

potential suitable habitat under the ice sheet (Fig. 1g).

Biogeographic hypotheses

Biogeographic hypotheses are models of population history

that indicate branching patterns, timing of divergence events

and effective population size (Ne) of populations of a species.

Hypotheses should contain enough parameters to distinguish

between alternate models, but be simple enough to be

addressed with the genetic material available (Knowles,

2004). Alternate biogeographic hypotheses for R. integrifolia

(Fig. S2) were based on the configuration of refugia as

identified by the refugial model (see Results, Fig. 3).

1. Panmixia. This is a null hypothesis that an individual has

an equal probability of being found anywhere in its

geographic range, such that divergence between the north

and south is effectively at present.

2. Northward colonization from a southern refugium after

the LGM. This model is defined by expansion out of a

southern refugium in the southern Oregon Cascades or

Sierra Nevada Mountains. This hypothesis predicts decreas-

ing genetic diversity with increasing latitude, and lineage

coalescence dating to, or prior to, the LGM. This model was

parameterized with 90% of Ne in the south and 10% of Ne

in the north.

3. Southward colonization from a northern refugium after

the LGM. This model is defined by expansion out of a

northern refugium based in south-western Alaska. This

hypothesis predicts increasing genetic diversity with increas-

ing latitude, and lineage coalescence dating to, or prior to,

the LGM. This model was parameterized with 90% of Ne in

the north and 10% of Ne in the south.

4. Colonization from multiple refugia with divergence after

the LGM. This model is defined by expansion out of north-

ern and southern refugia after the LGM. This hypothesis

predicts no relationship between latitude and genetic

diversity, and lineage coalescence dates to the LGM.

5. Colonization from multiple refugia with divergence during

the mid-Pleistocene. This model is defined by expansion out

of northern and southern refugia during the mid-Pleistocene.

This hypothesis predicts no relationship between latitude and

genetic diversity, and lineage coalescence dating to the

Illinoian Glacial Period, 120–180 kya.

Statistical phylogeographic analysis

Biogeographic hypotheses were tested using statistical phy-

logeography to determine the extent to which the empirical

genetic data supported each hypothesis (Fig. 1h). We used

the following protocol: (1) genomic DNA was extracted from

individual R. integrifolia sampled throughout their range, (2)

five anonymous nuclear loci were sequenced for each indi-

vidual, (3) phylogenies were estimated for each locus in Garli

v. 0.951 (Zwickl, 2006) and used as ‘observed’ trees for test-

ing models of divergence based on hypotheses developed

from the SDMs; and (iv) population genetic parameters (i.e.

Ne) were estimated in LAMARC v. 2.1.6 (Kuhner, 2006).

Coalescent simulations of genealogies constrained within

models of population divergence were performed with

MESQUITE 2.75 (Maddison & Maddison, 2011). Each popula-

tion model is comprised of the tree topology, relative estimates

of Ne for each population and time (in generations) given as

branch lengths. Gene trees were simulated by constraining the

coalescence of all sampled lineages within the topology, branch

lengths and relative Ne for a given model. This yielded 10,000

simulated gene trees within each model of divergence, over a

range of times (branch lengths). Given the uncertainty in esti-

mating Ne, we tested each model using a range of values

(10,000, 100,000, 300,000, 500,000, 700,000 and 1,000,000).

To test the fit of our observed data to a model, we gener-

ated an expected distribution of discordance between gene

trees and the population model, measured by deep coales-

cences (DC; Maddison, 1997). DCs are the number of extra

gene lineages per population, assuming incomplete lineage

sorting accounts for all discordance. The DC from the

observed gene trees were averaged across loci and compared

with the null distribution from the simulations to test

whether the observed tree could have been generated under
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the expected distribution for the population model (Fig. 1h

and 4). If the observed DC did not fit the expected distribu-

tion for a given model (P < 0.05), that model was rejected.

If the observation fell within the expected distribution for a

model (P > 0.05), that model was accepted as a possible

scenario that could have led to the distribution of genetic

variation observed today.

Future projections and novel climates

Models for R. integrifolia were projected onto future climate,

including two greenhouse gas scenarios for each of five

GCMs for 2085 (Fig. 1i). Probabilistic output was converted

to presence/absence using two thresholds (minSeSp and

mean). Consensus probability maps used 80 models (eight

algorithms, two threshold methods and five GCMs). These

maps indicate the percentage of models showing the presence

of suitable habitat, truncated at 50% or more of the models

indicating suitable habitat.

Analysis of the spatial distribution of novel values of climate

variables was conducted using the program Maxent, v. 3.3.3

(Elith et al., 2010). For each climate data set, Maxent calculates

a multivariate environmental similarity surface, which indi-

cates how similar a point is to a set of reference points across

multiple predictor variables. Surfaces for palaeo- and future

climates were reclassified and combined to indicate the

number of GCMs with novel values of climate variables.

RESULTS

Predictor variables and model evaluation and

selection

Eight predictor variables were chosen to model suitable habi-

tat for R. integrifolia (Table 2). All models met the guideline

of mean AUC and mean sensitivity > 0.7 (Table 3). Variabil-

ity across cross-validation runs (Fig. 2) supports building

final models using 100% of the data. FDA and MARS had

the lowest sensitivity scores and showed high variability in

response to random pulls of training data. Both performed

well based on AUC, however, so were retained in the ensem-

ble. ANN probabilities were much lower than other models,

so it was removed from the ensemble.

Refugial model and biogeographic hypotheses

The consensus refugial model showed a high level of support

for multiple refugia since the LIG (Fig. 3). Both north and

south of the LGM ice sheet, there were pixels classified as

suitable habitat with 90–100% agreement across the four

time slices, indicating that at least 118 of 128 models classi-

fied those pixels as suitable habitat (Fig. S1). This provides

very strong support for a two refugia hypothesis (north and

south of the LGM ice sheet).

Additionally, each of the 128 binary models (Fig. S1) were

inspected for the presence of suitable habitat to the north

and/or south of the LGM ice sheet. Of the 128 models, 122

(95%) had pixels classified as suitable habitat both north and

south of the ice sheet. Only six models (5%) did not have

suitable pixels in both the north and south. These six models

used the same combination of RF and the minSeSp threshold

applied to the three GCMs of the Mid-Holocene and LGM.

These models had a very small number of suitable pixels

overall indicating that, in this case, the RF/minSeSp thresh-

old combination may be too conservative.

At the 50% level, the consensus refugial model showed

potential refugia to the north, south and west of the LGM ice

sheet (Fig. 3). South of the ice sheet, the strongest support

(70% and greater) was found in the Oregon Cascades, Klamath

Table 2 Predictor variables used to model the distribution of

suitable habitat for Rhodiola integrifolia.

Variable Description

Annual

temperature range

Maximum temperature of the warmest

month – minimum temperature of the

coldest month, calculated per pixel

Isothermality A measure of temperature seasonality;

mean diurnal range/annual

temperature range

Summer minimum

temperature

Mean of minimum temperatures for

June, July and August

Standard deviation

of summer

minimum temperature

Mean of standard deviations of

minimum temperatures for June, July

and August

Cumulative

spring snowpack

Sum of snowpack for March,

April and May

Annual

precipitation range

Precipitation of the wettest month –

precipitation of the driest month,

calculated per pixel

Precipitation of

the driest month

Precipitation of the driest month,

calculated per pixel

Mean spring

precipitation

Mean of precipitation for March,

April and May

Table 3 Mean AUC and sensitivity of 10 cross-validation runs

on test data for nine single models and the final consensus

model (does not include ANN). The maximum value for each

test statistic is indicated with bold font. See text for model

abbreviations.

Model AUC Sensitivity

ANN 0.834 0.887

CTA 0.791 0.901

FDA 0.854 0.749

GAM 0.859 0.958

GBM 0.866 0.979

GLM 0.850 0.946

MARS 0.852 0.778

MAX 0.888 0.959

RF 0.872 0.949

Consensus 0.909 0.948
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and Sierra Nevada Mountain ranges, while north of the ice

sheet refugia were found in the Aleutian Islands and south-

west Alaska. Coastal refugia in Haida Gwaii and the Alexander

Archipelago (west coast of British Columbia and Alaska) were

also indicated at a 50% level. Based on the configuration of ref-

ugial habitat in the SDM model and the availability of genetic

samples, five alternate biogeographic hypotheses were tested

(Fig. S2 and Methods). Because the consensus refugial model

shows a high level of support for multiple refugia since the

LIG, phylogeographic support for hypothesis 4 or 5 would best

corroborate niche conservatism in R. integrifolia. Support for

alternative hypotheses is considered in the discussion.

Statistical phylogeographic analysis

The first three hypotheses were not supported by the phyloge-

ographic analysis; the average observed number of deep

coalescences (DC = 9.8) did not meet the expected distribu-

tion for the population models at a = 0.05 (P < 0.0001 for

each model across all estimates of Ne). Likewise, the recent

(LGM) hypothesis of divergence between northern and south-

ern refugia (hypothesis 4) was also rejected (P < 0.0001 across

all estimates of Ne). The only model that was supported was

that of a mid-Pleistocene divergence between northern and

southern refugia (hypothesis 5). For this model, the observed

number of deep coalescences fell within the expected distribu-

tion for Ne = 500,000 (P = 0.5387, Fig. 4a) and Ne = 700,000

(P = 0.0805, Fig. 4b) with a lower bound near Ne = 300,000

(P = 0.0347, Fig. 4c); all other estimates of Ne yielded

P-values < 0.0001. Overall, the northern population has a

much larger effective population size (Ne = 15,750,000) rela-

tive to the southern population (centred in the Sierra Nevada

Mountains, Ne = 68,000), as estimated in LAMARC.

Future projections

The match between refugia identified by the SDMs and phy-

logeographic analysis supports niche conservatism in

R.integrifolia across the modelled time period. This stable cli-

mate-distribution relationship was therefore used to assess

future climate change impacts on the distribution of suitable

habitat. Projections for the A1B and A2 scenarios at 2085

did not differ substantially, with both indicating a significant

reduction in suitable habitat (63% to 67%) by 2085 (Table 4,

Fig. 5d,e). Both projections show a northward latitudinal

shift in suitable habitat, with habitat losses represented by

upwards elevational shifts and/or contractions of suitable

habitat (Fig. 5d,e). Relative to habitat loss, habitat expansion

was minimal, with the largest gains in the Brooks Range and

north coast of Alaska. Both scenarios show dramatic loss of

habitat in the southern part of the range. Although not

explicitly quantified in this analysis, there were considerable

differences across the five GCM projections for both the A1B

and A2 scenarios (Fig. 6).

Novel values of climate variables

For the refugial model, novel values of climate variables were

present mainly to the north of the LGM ice sheet (Fig. 7a),

where suitable habitat and novel climate variables coincided

for one to two of the seven GCMs, both from the LGM. For

two of the GCMs novel values did not overlap north of the

ice sheet. South of the ice sheet all novel values came from

the LGM data; the southern Rockies were of particular note,

with summer minimum temperature from all three LGM

GCMs being outside the training range. The presence of

novel values in LGM data is not surprising given the large

differences between LGM and current climate.

For both future scenarios, the overlap of novel values of

climate variables with projected suitable habitat is limited

mainly to north-western Alaska (Fig. 7b,c), where there is at

least one GCM that does not have novel values. Future

consensus projections do not show a gain of suitable habitat

(a)

(b)

A
U

C
Se

ns
iti

vi
ty

Model
ANN CTA FDA GAM GBM GLM MARS MAX RF Consensus

Model
ANN CTA FDA GAM GBM GLM MARS MAX RF Consensus

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Figure 2 Boxplots for sensitivity (a) and AUC (b) scores for 10

cross-validation runs on test data. The boxes represent the range

of half of the scores, with the median represented by the black

line. The whiskers represent the minimum and maximum score

values. The consensus model does not include ANN. Note

difference in y-axis scaling between (a) and (b); see text for

model abbreviations.
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along the arctic coast; however, novel values of variables in

this region indicate that this is an area of uncertainty in

model projections, so the potential for climatically suitable

habitat in this region should not be dismissed.

DISCUSSION

Niche conservatism and biogeographic hypothesis

testing

The use of static SDMs to project future distributions is only

appropriate for species where the climate-distribution rela-

tionship is stable. Although niche conservatism is usually

assumed (or not addressed at all) in SDM studies, previous

research has shown the potential for rapid adaptation (e.g.

Berlocher, 2000; Broennimann et al., 2007; Franks et al.,

2007). For many species evolutionary responses will be

nuanced, with adaptation occurring at range limits, particu-

larly trailing-edge populations (Ackerly, 2003; Hampe & Petit,

2005; Parmesan, 2006). Especially for studies modelling at fine

resolutions (e.g. 1-km pixel sizes), the potential for rapid adap-

tation at range limits should give modellers pause, in addition

to other concerns at fine scales, such as changing biotic inter-

actions and potential errors in climate data downscaling.

We addressed the assumption of niche conservatism for

R. integrifolia by using two complementary methods, SDMs

and phylogeography. In this study, both analyses supported

the same multiple-refugia hypothesis, supporting niche con-

servatism in R. integrifolia and justifying projection of the

SDMs onto future climate data. This finding of niche conser-

vatism is consistent with previous palynological and phyloge-

netic research on plant responses to Quaternary climate

change which has generally agreed that the fundamental

response of most temperate plant taxa to Quaternary climate

changes was migration, rather than adaptation (Prinzing

et al., 2001; Ackerly, 2003). Additionally, phylogeographic

analysis has a role in resolving taxonomic uncertainty prior

to the use of SDMs, because improperly grouped (or sepa-

rated) clades can impact assessments of niche conservatism.

It is important to note that phylogeographic support for

the alternate hypotheses of panmixia or a single R. integrifolia

refugium to the south or north of the LGM ice sheet would

not necessarily have invalidated the refugial model, but infer-

ence concerning the mechanisms at work would be less

straightforward. For example, areas modelled as climatically

suitable may not have been occupied by the species due to

long-term barriers to dispersal. Alternatively, if range expan-

sion after the LGM was accompanied by niche expansion, the

climate niche of R. integrifolia would have changed between

the current and pre-LGM time periods, resulting in a mis-

match between the palaeodistribution models and the phylog-

eographic analyses. This case has been demonstrated in

Candidula land snails (Pfenninger et al., 2007) illustrating

that the assumption of niche conservatism in SDM studies

should be tested.

Additionally, support for the multiple-refugia hypothesis is

limited to the context of the five models tested. These

models represent relatively simple hypotheses regarding the

Refugia for R. integrifolia:
      suitable habitat across
      four time slices using
      suitability cutoffs of:

LGM ice sheet

50–70%

70–90%

90–100%

30–50%

Sierra        
Nevada    

Mts.

  Cascade
Mts.

Klamath
Mts.

Haida  
Gwaii

Alexander

Archipelago

Aleutian Islands

Brooks Range

Figure 3 Consensus refugial model

indicating areas of suitable habitat for

Rhodiola integrifolia across four time

slices: current conditions, mid-Holocene,

Last Glacial Maximum (LGM) and Last

Interglacial. Major features are labelled.

Ice sheet layer is from Dyke et al., 2003.

Map projection: North America Albers

Equal Area Conic.
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structuring of genetic diversity in this widely distributed spe-

cies. Given the results of the SDMs, more sophisticated

hypotheses could be tested with additional genetic data. For

example, an interesting result of the refugial modelling was

the indication of suitable habitat in the Alexander Archipel-

ago and Haida Gwaii, to the west of the LGM ice sheet

(Fig. 3). The presence of this cryptic refugia in coastal British

Columbia has been established in previous studies (Warner

et al., 1982; Cook et al., 2006; Shafer et al., 2010; and refer-

ences therein). Unfortunately, we did not have genetic sam-

ples from this area, preventing a test of this west-coast

refugial hypothesis. The presence of this refugium has been
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(c) Figure 4 Tests of biogeographic

hypotheses comparing the average

observed number of deep coalescences

(DC = 9.8) with a null distribution of

DC values from simulated genealogies

constrained within models of population

divergence and effective population sizes

(Ne). Models with P > 0.0001 are

illustrated here; all three are models of

hypothesis 5, a mid-Pleistocene

divergence between northern and

southern refugia. The most highly

supported model was for (a)

Ne = 500,000 (P = 0.5387), bounded by

the models for (b) Ne = 700,000

(P = 0.0805) and (c) Ne = 300,000

(P = 0.0347).
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supported, however, by an analysis of haplotype distributions

for R. integrifolia (Guest, 2009). This illustrates how models

derived from SDMs can be used to not only develop biogeo-

graphic hypotheses, but also direct appropriate sampling

strategies to better target specific phylogeographic questions.

A test of this west-coast hypothesis would contribute to our

understanding of the role of cryptic refugia in structuring

current patterns of genetic diversity, as well as improve esti-

mates of dispersal and recolonization rates after the LGM.

Additionally, confirmation of a west-coast R. integrifolia

clade would lend support to efforts to recognize and con-

serve the unique biota of these islands (Cook et al., 2006).

Future projections: the value of ensemble methods

and genetic data, and a few caveats

Future projections of habitat suitability for R. integrifolia

show substantial losses of climatically suitable habitat across

the range. Overall differences between greenhouse gas

scenarios were minimal (Fig. 5, Table 4), while differences in

projections across GCMs were quite large (Fig. 6). This

indicates that less focus should be placed on modelling alter-

nate scenarios, with more effort directed towards sampling

different GCM projections (Buisson et al., 2010).

Table 4 Changes in climatically suitable habitat for Rhodiola

integrifolia from current conditions to future climate scenarios

for 2085.

A1B

Scenario, %

A2

Scenario, %

Loss 63 67

Stable 25 22

Gain 12 11

Legend for
(a), (b), (c):

Current (1971–2000)
consensus probability map

A1B Scenario - 2085
consensus probability map

A2 Scenario - 2085
consensus probability map

A1B Scenario - change
from current to 2085 

A2 Scenario - change
from current to 2085 

Change in
suitable habitat:

Stable
Loss
Gain

(a)

(b) (d)

(c) (e)

Consensus
probability maps:

50–60%
60–70%
70–80%
80–90%
90–100%

Legend for
(d), (e):

Figure 5 Current (a), A1B scenario (b)

and A2 scenario (c) consensus

probability maps. Change in suitable

habitat from current to future for the

A1B (d) and A2 (e) scenarios, based on a

cut-off of 50% of the models indicating

suitable habitat; black dots (a, d, e)

indicate pixels with current populations

of Rhodiola integrifolia (based on

herbarium searches). Map projection:

North America Albers Equal Area Conic.
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In the southern part of the range, there is an almost

complete loss of climatically suitable habitat. Habitat persists

at greatly reduced levels in the Sierra Nevada Mountains in

both the A1B and A2 scenarios, while only the A1B scenario

retains any suitable habitat by 2085 in the Northern Rocky

Mountains. The central and northern parts of the range also

show large habitat losses, including complete loss of habitat

in the Alexander Archipelago and Haida Gwaii. Habitat gains

in south-east Alaska may facilitate population connectivity

between central and northern populations, while the devel-

opment of climatically suitable habitat in the Brooks Range

of Alaska may allow for population expansion (Fig. 5d,e).

The identification of past refugia is an important benefit

of combining phylogeography and SDMs. Because glacial–

interglacial refugia tend to harbour high levels of allelic

diversity, these regions have implications for conserving the

genetic variability of current and future populations. The ref-

ugial model indicates discrete southern refugia in the south-

ern Oregon Cascades, Klamath and Sierra Nevada Mountain

ranges (Fig. 3). Populations in the Oregon Cascades are pre-

dicted to be extirpated by 2085, although the potential for

persistence in microclimate refugia should not be discounted

(see below). The Sierra Nevada population is likely to persist

but will be further isolated under both future climate change

IPSL projection
(16 models)

CSIRO projection
(16 models)

Final A2 projection
(80 models)

HadGEM projection
(16 models)

MIROC projection
(16 models)

(a) (b)

(d)(c)

(f)

Percentage of models
indicating suitable habitat: 90–100%

70–80%

80–90%

50–60%

60–70%

BCCR projection
(16 models)

(e)

Figure 6 Comparison of projections of

suitable habitat for Rhodiola integrifolia

across five general circulation models

(b–f) and the final consensus projection

(a) for the A2 scenario at 2085.

Projections are truncated at 50% of the

models indicating suitable habitat. Map

projection: North America Albers Equal

Area Conic.
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scenarios. The persistence of these populations will be

important to the maintenance of overall levels of genetic

diversity in this species, because phylogeographic analyses

indicate that these populations represent genetically distinct

lineages.

Although these projections appear dire, it is important to

recognize that the coarse grain of this biogeographic analysis

can overpredict the loss of climatically suitable habitat. Espe-

cially in mountainous regions, coarse SDMs are likely to

underestimate the potential for suitable habitat under future

climate change (Randin et al., 2009; Barbet-Massin et al.,

2010). At landscape to local scales, topography has important

impacts on the distribution of alpine plants, mainly due to

its influence on the distribution of microclimate refugia in

mountainous terrain (Dobrowski, 2011). In these areas of

topographic complexity, climate patterns at fine scales are

influenced by spatially varying elevation relationships, terrain

barriers, terrain-induced climate transitions, cold air drainage

patterns, inversions and coastal effects (Daly, 2006). Because

coarse climate data average out these complexities, the most

likely outcome is underestimation of potential habitat,

although one study has shown the opposite effect (Trivedi

et al., 2008).

This suggests some important limitations in the use of

SDMs to predict climate change impacts. First, modellers

need to balance ‘resolution with realism’ (Daly, 2006) when

downscaling projections from GCMs, although the increasing

availability of regional climate models may help with this

limitation (at least for future climate projections). The com-

mon use of climate data that are interpolated to ~1-km pixel

sizes from very large scale GCMs (e.g. 2 by 3°) should be

questioned. A second consideration is that at fine (landscape

to local) scales, climatic controls over species distributions

break down. Biotic interactions, source-sink dynamics,

demographic processes, topography and microclimate are

extremely important. At these scales, the use of SDMs alone

is not suitable; SDMs integrated with mechanistic models is

a more appropriate approach (e.g., Brook et al., 2009).

Projected suitable habitat:
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Number of GCMs with at least one novel climate variable:
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Refugial Map (a): Future Maps (b and c):

Refugial Map
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Figure 7 Geographic distribution of novel values of climate variables for the refugial map (a), A1B future scenario (b) and A2 future

scenario (c) for Rhodiola integrifolia. Colour scales represent the number of general circulation models (GCMs) with at least one climate

variable outside the range of the current climate data (out of seven total GCMs for the refugial map, and five for the future scenarios).

Hatched areas represent projected suitable habitat. Ice sheet layer in (a) is from Dyke et al., 2003. Map projection: North America

Albers Equal Area Conic.
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Ensemble modelling and novel climates

In addition to support from genetic analyses, projected spe-

cies distribution were made more robust through the use of

an ensemble and consensus approach. The consensus model

of current R. integrifolia distribution had a higher predictive

capacity based on AUC scores than any of the single SDMs

alone (Fig. 2b, Table 3) and was among the highest scoring

based on sensitivity scores (Fig. 2a, Table 3). This is in

agreement with previous research indicating that consensus

models outperform individual models, providing more

robust projections of habitat distributions (Marmion et al.,

2009; Grenouillet et al., 2011). Additionally, the use of multi-

ple algorithms in studies that project species distributions is

essential because models with the highest accuracy on

current climate data may not be the best at projecting onto

new areas or climate conditions (Heikkinen et al., 2012).

The ensemble and consensus approach also allows a spatial

depiction of agreement across model algorithms, by showing

areas of consensus (higher confidence) and disagreement

(lower confidence). The combined output of model algo-

rithms, threshold methods and GCM conditions helps deli-

mit a range of uncertainties associated with projecting the

distribution of suitable habitat (Ara�ujo & New, 2007).

Despite its advantages, ensemble modelling should be used

with caution. Na€ıve use of model algorithms can result in

poor parameterization and poorly performing models.

Ensemble approaches can also magnify the work-load associ-

ated with modelling species distributions. Despite these

drawbacks, ensemble approaches are an effective way to

create robust projections that include a depiction of variabil-

ity and uncertainty.

The use of multiple GCMs is an especially important com-

ponent of the ensemble approach when projecting species

distributions. We found substantial variability across the five

GCMs used for future projections (Fig. 6). Most SDM stud-

ies use one or at most two GCMs for future projections;

there is certainly room for improvement in this component

of projecting climate change impacts. Modellers are limited

by the availability of interpolated climate data from these

GCMs, and so often focus their efforts on including multiple

greenhouse gas scenarios, despite the fact that these contrib-

ute very little to sampling the variability in future projections

(Fig. 5d,e, Table 4, Buisson et al., 2010).

Novel climate analysis also illustrates why it is important

to use multiple GCMs. While GCMs can sometimes be

spatially coherent in their novel climates across variables

(e.g. different GCMs predicting areas of novel climate in

similar locations based on the same variable), many times

GCMs differ in their spatial prediction of novel values of cli-

mate variables. For example, in the A1B and A2 projections,

areas of novel climate are seen in the north-western part of

Alaska and along the arctic coast (Fig. 7b,c). For both sce-

narios, there are GCMs without novel values in these regions.

If this were an area of conservation concern, those GCM

projections without novel values could be individually

inspected to avoid the uncertainties associated with project-

ing models onto novel climates. Overall, novel climates can

be minimized in SDMs by training the current model on the

entire latitudinal range of the species, ensuring that all cur-

rent values and combinations of climate variables are

included in the creation of response curves.

Applications and conservation strategies

Efforts to conserve biodiversity and improve ecosystem func-

tioning need to move beyond predictions of climate change

impacts and towards an integrated effort to address solutions

(Dawson et al., 2011). With their focus on quantifying expo-

sure of species to climate change, SDMs will be only one

component of these efforts. Practitioners should continue to

develop a more sophisticated understanding of the advanta-

ges, limitations and appropriate uses of SDMs, while working

with colleagues to incorporate complementary analyses. Inte-

grating molecular approaches such as phylogeography has

great potential to improve conservation decision-making by

providing a more comprehensive assessment of climate

change impacts that addresses both exposure and past

responses to climate change, as well as identifying areas of

potentially high genetic diversity. This integrated approach

will be the most effective way to develop robust conservation

strategies for species and ecosystems in the face of the inter-

acting stressors of climate change, land-use change, habitat

destruction, invasive species and other anthropogenic

influences.
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Figure S1: 

Method for developing the consensus refugial model from an ensemble (a) of 128 individual 

models (b). For each time slice, the individual models were combined to show the percentage of 

models indicating presence of suitable habitat in each pixel based on four thresholds (c). Each 

pixel was assessed for agreement across the four time slices at each threshold, resulting in the 

consensus refugial model (d); GCM = general circulation model. 
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Supporting Information: Figure S2 

“Integrating ensemble species distribution modeling and statistical phylogeography 

to inform projections of climate change impacts on species distributions” 

B.R. Forester, E.G. DeChaine and A.G. Bunn 

 

Figure S2: 

Biogeographic hypotheses tested using statistical phylogeography. Each hypothesis represents a 

different model of effective population sizes (Ne) and divergence times: (a) panmixia; (b) 

northward colonization from a southern refugium after the Last Glacial Maximum (LGM); (c) 

southward colonization from a northern refugium after the LGM; (d) colonization from multiple 

refugia (north and south) with divergence after the LGM; and (e) colonization from multiple 

refugia (north and south) with divergence during the mid-Pleistocene (Illinoian Glacial Period). 

Inset photo is Rhodiola integrifolia, Sierra Nevada Mountains, CA (photo by B. Forester). 
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Appendix S1: Climate data and predictor variables 

When available, global monthly layers were downloaded from climate databases for the 

following four climate variables: total precipitation rate (pr), surface (2m) air temperature (tas), 

maximum surface temperature (tasmax), and minimum surface temperature (tasmin). Current 

climate data are based on a 30-year mean (1971-2000). Mid Holocene (6 kya) and LGM (21 kya) 

climate data are 100-year means, except as indicated below. LIG (124 kya) climate data are 30-

year means. Future climate data are 30-year (2071-2100) or 29-year (2071-2099) means. All 

monthly climate data files for pr, tas, tasmin, and tasmax were plotted as histograms and 

inspected visually for problems. All models passed this inspection except specific months in two 

future climate models for variable pr (see Future Data below). 

Anomalies were calculated for past and future climate data. Absolute anomalies (past-

present and future-present) were calculated for temperature variables, while relative anomalies 

were calculated for precipitation (past/present and future/present). Anomalies were interpolated 

globally to a 0.5° pixel size using ordinary cokriging in ArcMap (ESRI 2010). CRU TS 2.1 

climate data were used as the secondary cokriging dataset. The “Optimize Model” setting was 

used for each layer (minimizing the mean square error), and the search neighborhood for the 

climate layer was set to 12 maximum and 2 minimum neighbors with semiaxes settings of 20. 

The CRU dataset was set to a search neighborhood of 5 maximum and 2 minimum neighbors, 

with semiaxes set to 20. These settings were chosen to minimize error rates. Interpolated 

anomalies were applied to CRU climate data to create the final normalized climate layers for 

each time slice. Negative precipitation values were set equal to zero. 

 

Interpolation errors: 

Interpolation errors were reported as root mean square error (RMSE), which quantifies the 

difference between predicted and measured values. RMSE can be sensitive to outliers 

(Hernandez-Stefanoni & Ponce-Hernandez, 2006), but is considered one of the better measures 

of overall model performance (Willmott, 1982). Small values of RMSE indicate good agreement 

between predicted and measured values. 

For temperature climate variables (including surface air temperature, maximum and 

minimum surface temperatures, and the standard deviation of minimum surface temperature) 

RMSE values were small. Of these values, 9% (57 values) had errors greater than 1, and less 

than 1% (4 values) had errors greater than 3. Of the errors greater than 1, all but one was found 

in 21 kya data sets. 

Values of RMSE for total precipitation rate were more variable. Of the 204 RMSE values 

for precipitation, 23% (47 values) were greater than 1, 11% (22 values) were greater than 3, and 

7% (14 values) were greater than 10. Precipitation datasets with RMSE values greater than 10 

were inspected using histograms and mapped monthly data. Six of these 14 monthly datasets 

were found to have non-climatic patterns: HadGem1 A2 January; IPSL CM4 A1B March, 
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November, and December; and IPSL CM4 A2 November and December.  Problems with these 

files could not be resolved, so alternate precipitation files for these months were calculated by 

averaging the monthly precipitation files from the remaining four future data sets. The remaining 

datasets with RMSE values greater than 10 were within normal precipitation ranges for the study 

area and were not altered. 

Generally, the higher variability of GCM data for precipitation in comparison to 

temperature is expected. GCMs can quite accurately simulate seasonal temperatures, since the 

large scale factors controlling temperature (insolation patterns and the configuration of 

continents) are well understood (Randall et al., 2007). Factors controlling precipitation are more 

numerous and complex, and can be difficult to evaluate at large scales (Randall et al., 2007). 

While GCM ensembles (model means) show skill at global simulations of annual mean 

precipitation, individual models can show “substantial precipitation biases” (Randall et al., 

2007). These biases may account for the larger RMSE errors found in precipitation vs. 

temperature variable datasets. They also illustrate why SDMs should be based on more than one 

GCM data set. 
 

Predictor variables: 

Sixty potential predictor variables were calculated that are relevant to plant life generally and 

arctic-alpine species in particular. Snowpack was calculated using methods developed by Lutz et 

al. (2010). To incorporate measures of climate extremes, the standard deviations of temperature 

and precipitation were calculated (Zimmermann et al., 2009). Of the 60 calculated predictor 

variables, the most relevant were identified using the randomForest package (Liaw & Wiener, 

2002) in R (R Development Core Team, 2012). Random forest is an ensemble modeling 

approach that incorporates measures of variable importance that are increasingly being used for 

variable selection in a wide variety of applications because of their flexibility (e.g. variables are 

assessed both independently and using a multivariate approach among variables, Strobl et al. 

2008). However, correlation between predictor variables can impact random forest variable 

importance measures, so recommendations to address this problem by Strobl et al. (2008) were 

followed, including using multiple values of mtry (the number of variables randomly sampled at 

each split) as well as a large number of trees (5000). Absences were chosen at random to equal 

the number of presence records. Random forest was run 100 times with 5000 trees at the 

following values of mtry: 5, 10, 20, 30, 40, 50, 55, and 60. Gini importance and mean decrease 

accuracy scores were output and averaged over 100 runs for each value of mtry. Variables were 

chosen based on variable importance scores as compared across mtry values. Spearman’s 

correlation was used to remove variables that were correlated at rho values greater than |0.8|. Of 

the 60 potential predictor variables, eight were chosen for modeling (Table 2, main text). 
 

Current climate data: 

 CRU TS 2.1 model (Mitchell and Jones 2005): Global monthly values for all four 

variables representing current global climate (mean of 1971-2000) were downloaded 

from the Climate Research Unit TS 2.1 model. The native resolution of this data is 0.5°. 

Standard deviations of the four variables were calculated by taking the standard deviation 

of monthly data over 30 years (1971-2000). These standard deviations were used in 

variable selection (see main text). For past and future climate data, standard deviations 

were calculated for tasmin alone, since this variable was chosen during variable selection. 
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Paleoclimate data: Mid-Holocene (6 kya) and Last Glacial Maximum (21 kya) 

These data were downloaded from the Paleoclimatic Modelling Intercomparison Project Phase 2 

(PMIP 2) database (Braconnot et al. 2007). I would like to acknowledge the international 

modeling groups for providing their data for analysis, the Laboratoire des Sciences du Climat et 

de l'Environnement (LSCE) for collecting and archiving the model data, and individual members 

of the modeling groups who assisted with questions. The PMIP 2 Data Archive is supported by 

CEA, CNRS and the Programme National d'Etude de la Dynamique du Climat (PNEDC). Data 

were downloaded from the database between 1/15/2011 and 2/26/2011. More information is 

available at http://pmip2.lsce.ipsl.fr/. 

 CCSM 3 model (Otto-Bliesner et al. 2006): Global monthly values for all four variables 

were downloaded from the PMIP 2 database for 0, 6, and 21 kya. The native resolution of 

this data is 2.8125°. The standard deviation of tasmin was calculated by taking the 

standard deviation of monthly data over 100 years. Some CCSM precipitation anomalies 

showed extreme values (e.g. 3e14); to correct for these extremes, the 0.5
th

 and 99.5
th

 

quantiles of the CCSM precipitation anomalies were changed to the closest (lowest or 

highest) value prior to interpolation. 

 HadCM3 UBRIS and HadCM3 models (Gordon et al. 2000): The 6 kya and 21 kya 

data from this model were produced on different computers using different compilers, so 

are treated separately; each time slice (6 and 21 kya) has its own 0 kya set from which 

anomalies were calculated (Michel Crucifix, pers. comm., February 2011). The native 

resolution of the 6 and 21 kya datasets is 3.75° (longitude) x 2.5° (latitude). For 6 kya 

data, global monthly values for all four variables were downloaded from the PMIP 2 

database. The standard deviation of tasmin was calculated by taking the standard 

deviation of monthly data over 100 years. For 21 kya data, global monthly values for pr 

and tas were downloaded from the PMIP 2 database. Monthly data for tasmin and tasmax 

were not available for the 21 kya model run, so daily tasmin and tasmax data (over 20 

years) were downloaded. These data were processed to create 20-year mean monthly data 

sets for tasmin and tasmax. The standard deviation of tasmin was calculated by taking the 

standard deviation of monthly data over 20 years. 

 MIROC 3.2 model (K-1 model developers 2004): Global monthly values for all four 

variables were downloaded from the PMIP 2 database for 0, 6, and 21 kya. The native 

resolution of this data is 2.8125°. The standard deviation of tasmin was calculated by 

taking the standard deviation of monthly data over 100 years. 

 

Paleoclimate data: Last Interglacial (124 kya) 

We gratefully acknowledge the assistance of Dr. Joy Singarayer in obtaining access to these data. 

 HadCM3 model (Gordon et al. 2000): Global monthly values for pr and tas were 

downloaded from the Bristol Research Initiative for the Dynamic Global Environment 

(BRIDGE) database for 0 and 124 kya. The native resolution of this data is 3.75° 

(longitude) x 2.5° (latitude). Model data for tasmin and tasmax were not available. 

Assuming similar variability in temperature between the LIG and current interglacial 

conditions, offsets between current (CRU) mean temperature (tas) and minimum and 

maximum temperature (tasmin and tasmax) were calculated. These offsets were applied 
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to LIG mean temperature values to create LIG tasmin and tasmax data sets. The standard 

deviation of tasmin was therefore identical to that for the current period. 

 

Future climate data 

These data were downloaded from the Coupled Model Intercomparison Project Phase 3 (CMIP 

3) database (Meehl et al. 2007), and the World Data Center for Climate’s CERA database 

(Hamburg Germany). Scenarios downloaded include 20C3M (simulation of 20
th

 century 

climate), A1B, and A2. 

 BCCR BCM 2.0 model (www.bjerknes.uib.no): Global monthly values for all four 

variables were downloaded from the CERA database for the 20C3M, A1B, and A2 

scenarios. The native resolution of this data is 2.8125° and the model has been run 

through 2099 (29-year mean). The standard deviation of tasmin was calculated by taking 

the standard deviation of monthly data over 29 years. 

 CSIRO Mk3.5 model (Gordon et al. 2002): Global monthly values for all four variables 

were downloaded from the CMIP 3 database for the 20C3M, A1B, and A2 scenarios. The 

native resolution of this data is 1.875° and the model has been run through 2100 (30-year 

mean). The standard deviation of tasmin was calculated by taking the standard deviation 

of monthly data over 30 years. 

 HadGEM1 model (Johns et al. 2006): Global monthly values for pr and tas were 

downloaded from the CERA database for the 20C3M, A1B, and A2 scenarios. The native 

resolution of this data is 1.875° (longitude) x 1.24° (latitude) and the model has been run 

through 2099 (29-year mean). The exception is the A2 scenario, which was has been run 

through November 2099. In order to maintain the full 29-year mean, A2 means were 

calculated from December 2070 through November 2099. Monthly data for tasmin and 

tasmax were not available, so daily data were downloaded. These data were processed to 

create 29-year mean monthly data sets for tasmin and tasmax. The standard deviation of 

tasmin was calculated by taking the standard deviation of monthly data over 29 years. 

Visual inspection of histograms for monthly data indicated non-climatic patterns in the 

A2 January pr file. The problem was not resolved by working back through the data file, 

so an A2 January pr file was produced for the HadGEM1 data set by averaging the A2 

January pr files from the other four future data sets. 

 IPSL CM4 model (Marti et al. 2009): Global monthly values for pr and tas were 

downloaded from the CMIP 3 database for the 20C3M, A1B, and A2 scenarios. The 

native resolution of this data is 3.75° (longitude) x 2.5° (latitude) and the model has been 

run through 2100 (30-year mean). Monthly data for tasmin and tasmax were not 

available, so daily data were downloaded from the CERA database. These data were 

processed to create 30-year mean monthly data sets for tasmin and tasmax. The standard 

deviation of tasmin was calculated by taking the standard deviation of monthly data over 

30 years. Visual inspection of histograms for monthly data indicated non-climatic 

patterns in the A1B March, November, and December pr files as well as the A2 

November and December pr files. The problems were not resolved by working back 

through the data files, so alternate pr files were produced by averaging the appropriate pr 

files from the other four future data sets. 

http://www.bjerknes.uib.no/
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 MIROC 3.2 model, run 1 (K-1 model developers 2004): Global monthly values for all 

four variables were downloaded from the CERA database for the 20C3M, A1B, and A2 

scenarios. The native resolution of this data is 2.8125° and the model has been run 

through 2100 (30-year mean). The standard deviation of tasmin was calculated by taking 

the standard deviation of monthly data over 30 years. 

 

References: 

Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., 

Crucifix, M., Driesschaert, E., Fichefet, T., Hewitt, C.D., Kageyama, M., Kitoh, A., 

Laîné, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S.L., 

Yu, Y. & Zhao Y. (2007) Results of PMIP2 coupled simulations of the Mid-Holocene 

and Last Glacial Maximum – Part 1: experiments and large-scale features. Climates of the 

Past, 3, 261–277. 

ESRI (Environmental Systems Resource Institute) (2010) ArcMap 10.0, Redlands, California. 

Gordon, C., Cooper, C., Senior, C.A., Banks, H., Gregory, J.M., Johns, T.C., Mitchell, J.F.B. & 

Wood, R.A. (2000) The simulation of SST, sea ice extents and ocean heat transports in a 

version of the Hadley Centre coupled model without flux adjustments. Climate 

Dynamics, 16, 147–168. 

Gordon, H., Rotstayn, L., McGregor, J., Dix, M., Kowalczyk, E., O’Farrell, S., Waterman, L., 

Hirst, A., Wilson, S., Collier, M., Watterson, I. & Elliott, T. (2002) The CSIRO Mk3 

Climate System Model, CSIRO Atmospheric Research, Aspendale, Victoria, Australia. 

Hernandez-Stefanoni J.L. & Ponce-Hernandez R. (2006) Mapping the spatial variability of plant 

diversity in a tropical forest: Comparison of spatial interpolation methods. Environmental 

Monitoring and Assessment, 117:307-334. 

Johns, T.C., Durman, C.F., Banks, H.T., Roberts, M.J., McLaren, A.J., Ridley, J.K., Senior, 

C.A., Williams, K.D., Jones, A., Rickard, G.J., Cusack, S., Ingram, W.J., Crucifix, M., 

Sexton, D.M.H., Joshi, M.M., Dong, B.-W., Spencer, H., Hill, R.S.R., Gregory, J.M., 

Keen, A.B., Pardaens, A.K., Lowe, J.A., Bodas-Salcedo, A., Stark, S. & Searl, Y. (2006) 

The new Hadley Centre climate model (HadGEM1): Evaluation of coupled simulations. 

Journal of Climate, 19, 1327–1353. 

K-1 model developers (2004) K-1 coupled GCM (MIROC) description, (ed. by H. Hasumi and S. 

Emori) Center for Climate System Research, University of Tokyo. 

Liaw, A. & Wiener, M. (2002) Classification and regression by randomForest. R News, 2, 18–22. 

Lutz, J., van Wagtendonk, J. & Franklin, J.F. (2010) Climatic water deficit, tree species ranges, 

and climate change in Yosemite National Park. Journal of Biogeography, 37, 936–950. 

Marti, O., Braconnot, P., Dufresne, J.-L., Bellier, J., Benshila, R., Bony, S., Brockmann, P., 

Cadule, P., Caubel, A., Codron, F., Noblet, N., Denvil, S., Fairhead, L., Fichefet, T., 

Foujols, M.-A., Friedlingstein, P., Goosse, H., Grandpeix, J.-Y., Guilyardi, E., Hourdin, 

F., Idelkadi, A., Kageyama, M., Krinner, G., Lévy, C., Madec, G., Mignot, J., Musat, I., 

Swingedouw, D. & Talandier, C. (2009) Key features of the IPSL ocean atmosphere 

model and its sensitivity to atmospheric resolution. Climate Dynamics, 34, 1–26. 



Ensemble SDMs, statistical phylogeography & climate change - Appendix S1 - page 6 of 6 
 

Meehl, G.A., Covey, C., Taylor, K.E., Delworth, T., Stouffer, R.J., Latif, M., McAvaney, B. & 

Mitchell, J.F.B. (2007) THE WCRP CMIP3 multimodel dataset: A new era in climate 

change research. Bulletin of the American Meteorological Society, 88, 1383–1394. 

Mitchell, T.D. & Jones, P.D. (2005) An improved method of constructing a database of monthly 

climate observations and associated high-resolution grids. International Journal of 

Climatology, 25, 693–712. 

Otto-Bliesner, B.L., Brady, E.C., Clauzet, G., Tomas, R., Levis, S. & Kothavala, Z. (2006) Last 

Glacial Maximum and Holocene climate in CCSM3. Journal of Climate, 19, 2526–2544. 

R Development Core Team (2012) R: a language and environment for statistical computing, R 

Foundation for Statistical Computing, Vienna, Austria. 

Randall, D.A., Wood, R.A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman, A., 

Shukla, J., Srinivasan, J., Stouffer, R.J., Sumi, A. & Taylor, K.E. (2007) 2007: Climate 

Models and Their Evaluation. Climate Change 2007: The Physical Science Basis. 

Contribution of Working Group I to the Fourth Assessment Report of the 

Intergovernmental Panel on Climate Change (ed. by S. Solomon, D. Qin, M. Manning, 

Z. Chen, M. Marquis, K.B. Avery, M.Tignor and H.L. Miller). Cambridge University 

Press, Cambridge. 

Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. & Zeileis, A. (2008) Conditional variable 

importance for random forests. BMC Bioinformatics, 9, 307. 

Willmott C.J. (1982) Some comments on the evaluation of model performance. Bulletin of the 

American Meteorological Society, 63:1309-1313. 

Zimmermann, N.E., Yoccoz, N., Edwards, T., Meier, E., Thuiller, W., Guisan, A., Schmatz, D. 

& Pearman, P. (2009) Climatic extremes improve predictions of spatial patterns of tree 

species. Proceedings of the National Academy of Sciences, 106, 19723–19728. 



Ensemble SDMs, statistical phylogeography & climate change - Appendix S2 - page 1 of 1 
 

Supporting Information: Appendix S2 

“Integrating ensemble species distribution modeling and statistical phylogeography 

to inform projections of climate change impacts on species distributions” 

B.R. Forester, E.G. DeChaine and A.G. Bunn 

 

Appendix S2: Species distribution model parameterization and evaluation 

Modeling was conducted using the BIOMOD package (Thuiller et al., 2009) in R and 

Maxent, v. 3.3.3 (Phillips et al., 2006; Phillips & Dudik, 2008). Nine model algorithms were run: 

generalized linear models (GLM, using a binomial distribution, logit link with linear and 

quadratic terms, and stepwise AIC), generalized additive models (GAM, using a binomial 

distribution, logit link, and four degree smoothing splines), multivariate adaptive regression 

splines (MARS, using a maximum interaction degree of two on forward pass, with backward 

pruning based on cross-validation), classification tree analysis (CTA, with 50 cross-validations), 

flexible discriminant analysis (FDA, using MARS for scaling), artificial neural networks (ANN, 

with five cross-validations), generalized boosted models (GBM, using a Bernoulli distribution, 

5000 trees, and five cross-validations), random forest (RF, using 750 trees and mtry = 4), and 

maximum entropy (MAX, using 500 iterations and a convergence threshold of 0.00001). 

The area under the curve of the receiver operating characteristic (AUC, Fielding & Bell 

1997) and sensitivity were used to assess model accuracy and stability. When using pseudo-

absence data, AUC and sensitivity determine if a model can classify presence records more 

accurately than random expectation. Sensitivity was calculated because Maxent and BIOMOD 

use slightly different approaches to calculating AUC. For sensitivity, probabilities were 

converted to presence/absence using the mean probability value across model output. An exact 

one-tailed binomial test was used to calculate the probability of obtaining sensitivity values by 

chance. Significant tests (p < 0.05) indicate that the model is classifying presence better than a 

random expectation, given the proportion of pixels predicted present. Evaluation statistics were 

averaged across ten cross-validation runs and used to assess internal consistency. Evaluation 

statistics were calculated for the current consensus model to compare its performance to single 

models. 
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