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Abstract Landscape genomics investigates how spatial and environmental factors
influence geographic patterns of genome-wide genetic variation. Adaptive landscape
genomics focuses on how these spatial and environmental processes structure the
amount and distribution of selection-driven genetic variation among populations,
which ultimately determines how phenotypic variation is arrayed across landscapes.
This adaptive landscape genomics approach can be used to identify the causal factors
underlying local adaptation and has great potential to guide decision-making in
applied wildlife research, especially in light of anthropogenic climate and land use
change. Conservation and management applications include delineating conserva-
tion units, designing conservation monitoring programs, and predicting changes in
the spatial distribution and potential loss of adaptive genomic variation under
environmental change. However, there remains great untapped potential for the
application of adaptive landscape genomics to wildlife research, including moving
beyond correlative genotype-environment association tests. In this chapter, we
explore and discuss the potential of adaptive landscape genomics for improving
wildlife research, including case studies that illustrate its application in wildlife
management and conservation. We also present a comprehensive workflow for
adaptive landscape genomics studies in wildlife, including sampling design, geno-
mic and environmental data production, and data analysis. We conclude with
avenues and perspectives for future work and ongoing challenges in adaptive
landscape genomics.
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1 Adaptive Landscape Genomics and Wildlife Research

For over three decades, the study of genetic variation in wildlife species has been
used to investigate ecological and evolutionary questions, especially those related
to management and conservation (e.g., Frankham 1995; Frankham et al. 2017).
More recently, wildlife species have been a focus of landscape genetics research,
including the investigation of functional connectivity in heterogeneous landscapes,
the identification of source-sink dynamics and barriers to gene flow, and linkage of
processes, such as land use change and degradation, to patterns of genetic variation
(Storfer et al. 2010; Selkoe et al. 2015; Waits et al. 2015).

Prior to the development of next-generation sequencing (NGS), however, the
examination of adaptive genetic variation in wildlife was relatively limited (Bensch
and Akesson 2005). In the past decade, NGS technologies, with their falling
costs, improvements in genotyping yield and quality, and increasing accessibility
(Goodwin et al. 2016), have created an unprecedented opportunity to study local
adaptation and natural selection in wildlife populations. In an adaptive landscape
genomics framework, these data allow for the explicit investigation of how environ-
mental and spatial processes structure the amount and distribution of selection-
driven genetic variation among wildlife populations. This, in turn, informs our
understanding of the ecological and evolutionary processes at work, as well as
how best to manage and conserve the adaptive capacity of wildlife populations in
the face of complex and interacting environmental changes (Sgro et al. 2011;
Harrisson et al. 2014; McMahon et al. 2014; Hoffmann et al. 2015; Funk et al. 2018).

Despite these advances, there are many practical challenges of working with
wildlife that limit the use of adaptive landscape genomics, as reflected in the
small number of published empirical studies to date (see below). For many wildlife
species, sampling can be a major obstacle, including obtaining adequate sample
sizes, appropriate sample stratification across environmental gradients, and DNA
of sufficient quality and quantity. Study inference can often be limited by a lack of
basic ecological information including the proximal environmental drivers of natural
selection. Finally, a lack of genomic resources and an inability to use experimental
approaches in controlled environments (e.g., common gardens) for the majority of
wildlife species limits validation of identified candidate adaptive variants. These
issues are not insurmountable, however, and the integration of complementary data
and analyses can be used to improve inference in many cases.

In the following sections, we present a workflow for adaptive landscape genomics
studies in wildlife, including sampling design, genomic and environmental data
production, and data analysis. We follow up with a discussion of the potential of
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adaptive landscape genomics for wildlife studies, including case studies that illus-
trate the application of adaptive landscape genomics in wildlife management and
conservation. We conclude with avenues and perspectives for future work and
ongoing challenges in adaptive landscape genomics.

2 Data Production for Adaptive Landscape Genomics
Research in Wildlife

Adaptive landscape genomics includes a range of techniques for identifying
and analyzing spatially structured, selection-driven genetic variation, including
correlative genotype-environment associations (GEA), phenotypic approaches like
genome-wide association studies (GWAS) and quantitative trait locus mapping
(QTL), candidate-gene methods, and exome and transcriptomic approaches (Storfer
et al. 2015; Fig. 1). In this chapter, we focus on the identification of adaptive variants
through GEA, because this is the analytical framework that explicitly incorporates
environmental variation into the identification of selection-driven variation and is the
most widely used landscape genomics approach in wildlife to date (Balkenhol et al.
2017). The reasons for this are practical and include (1) no requirement for
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Fig. 1 Expanded view of the adaptive landscape genomics framework, illustrating how multiple
data types (boxes) can inform the relationships among spatially and temporally structured environ-
mental heterogeneity, genotypes (including genomic, epigenomic, and transcriptomic data), and
fitness-relevant phenotypes. Analytical approaches (black text) can be integrated to improve our
understanding of adaptation in wildlife species. Figure adapted from Sork et al. (2013)
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phenotypic data, which can be difficult to collect in the field on large numbers of
individuals; (2) no requirement for manipulative experiments such as crosses,
common gardens, and reciprocal transplants, which are impossible for many wildlife
species; and (3) no requirement for prior genomic resources. While any landscape
genomic study would be improved by the inclusion of complementary data sets and
resources (Sect. 4), they are not essential to addressing many of the questions
relevant to adaptive genetic variation in wildlife.

2.1 Landscape Sampling Designs

Sampling design is a fundamental component of robust research, but it is often
unclear how different sampling strategies affect interpretation of landscape genomic
results, including those obtained using GEA. So far, we know that the power of GEA
methods can depend strongly on sampling design, which includes how samples are
arrayed across the landscape, the total number of samples, and whether sampling is
individual- or population-based. Generally, it is best to array samples across the
maximum range of environmental variation that is thought to drive selection, for
example, collecting samples from the lowest and highest elevation populations for a
montane species. Though intermediate samples (i.e., along a transect) can be useful
in addressing some questions (e.g., the spatial scale of local adaptation), for most
GEA studies, intermediate samples will contribute little in terms of power (Lotterhos
and Whitlock 2015). Paired sampling that maximizes environmental distance while
minimizing geographic distance has shown high power and low false-positive rates
in simulations, since this design maximizes environmental signal while minimizing
the confounding effects of population structure (Lotterhos and Whitlock 2015). This
sampling design may not be practical for many real species inhabiting complex
landscapes, however.

Perhaps unsurprisingly, it is clear from simulation studies that increasing total
sample size increases power to detect signatures of selection (De Mita et al. 2013;
Lotterhos and Whitlock 2015). However, how those samples are arrayed, either
within populations or as individuals, has complex trade-offs in power and false-
positive rates. Population-based analyses combine individual genotypes into allele
frequency estimates for the population, whereas individual-based analyses use
individual genotypes as the response. Population-based sampling involves a com-
promise between the number of populations sampled and the number of individuals
used within each population to estimate allele frequencies. Generally, fewer indi-
viduals sampled across more populations is the most effective approach for
population-based GEA analysis (De Mita et al. 2013), though the impact of sample
allocation can be method- and demography-dependent (Lotterhos and Whitlock
2015). Individual-based sampling and analysis tends to improve power due to the
increase in the number of observations; however, this can also lead to increased
false positives for univariate (though not multivariate) GEAs (de Villemereuil et al.
2014; Forester et al. 2018). Several studies have also revealed important impacts of
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sampling design, including sample size, on characterizing the signal of IBD and
other processes that influence spatial genetic patterns (Landguth et al. 2012; Oyler-
McCance et al. 2013; Prunier et al. 2013). For example, a simulation study by
Landguth et al. (2012) found that although the strength of environmental correlation
values was not affected by sample size, the variance increased as sample size
decreased. This suggests that an increase in noise of spatial genetic data could
play a role in the ability to correctly identify loci under selection.

When possible, replicating sampling across multiple environmental gradients can
improve the strength of inference (i.e., more evidence for true adaptive detection,
Table 1), if the same candidate loci are identified (e.g., Hohenlohe et al. 2010;
Swaegers et al. 2015; Brauer et al. 2016). While a lack of replicated detection can
be indicative of false positives (Buehler et al. 2014), parallel adaptation through
different genes and genetic architectures (i.e., the underlying genetic basis of a
phenotypic trait) is also a possible explanation and one that can occur for a variety
of reasons, including metapopulation dynamics, limited dispersal, and habitat
heterogeneity (Ralph and Coop 2015a, b; Bernatchez 2016). Disentangling false
positives from parallel adaptation involving different genes and architectures is not a
simple task in species with limited genomic resources, so a lack of replicated
detection should be interpreted cautiously. This complexity illustrates why GEA
studies conducted in a small part of a species range should not be naively extrapo-
lated to the entirety of the range, especially for species with strong geographic
population structure (Hand et al. 2016).

There are still many avenues for research with regard to sampling protocol
for GEA methods. Future work should explore simulations that evaluate sample
allocation and effort for GEA method performance in both discrete populations
and continuously distributed individuals (e.g., Prunier et al. 2013; Landguth and
Schwartz 2014) and across spatially complex environments that control for both
gene flow and selection. Most studies thus far have used a spatially random sample
drawn from the population(s) to test GEA performance, but in reality, a truly random
sampling design is not only difficult to achieve in the field but can also have reduced
power relative to more strategic sampling strategies (Lotterhos and Whitlock 2015).
Future simulations should consider different sampling designs as well as the number
of loci sampled and the effect of missing data.

2.2 Genomic Data Production

Genomic data production begins with determining which molecular approach will
be best suited to the questions under consideration, to the amount of data that
will be needed to answer those questions, and to the budget available (Benestan
et al. 2016; Hohenlohe et al. 2017). Because most wildlife species lack genomic
resources, questions related to adaptive variation in wildlife will usually be best
served with an anonymous reduced representation sequencing approach (though
see Sect. 4 for a discussion of whole-genome resequencing in wildlife species).
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Reduced representation methods require no prior genomic information and ran-
domly subsample the genome to identify single nucleotide polymorphisms (SNPs).
The most common anonymous sequencing family is restriction-site associated
DNA sequencing (RADseq), which targets DNA adjacent to restriction enzyme
cut sites (Andrews et al. 2016). While there are limitations to RADseq approaches
(reviewed in Andrews et al. 2016), these methods are relatively inexpensive and
produce data from both neutral and adaptive genomic regions which can be used to
address a variety of management questions. Depending on genome size and levels
of linkage disequilibrium, varying proportions of the genome will be sampled by
RADseq methods (Lowry et al. 2016; McKinney et al. 2017). Most management
questions related to adaptive variation, however, do not require a complete assess-
ment of adaptive variation across the entire genome, nor the functional validation of
candidate loci (Sect. 3). In many cases, characterizing the geographic and environ-
mental patterns of potentially adaptive variation across populations will be sufficient
(Catchen et al. 2017; Hohenlohe et al. 2017).

For species without genomic resources, downstream bioinformatics analyses of
RADseq data (i.e., locus assembly, genotype, and SNP calling) are done de novo
(e.g., Catchen et al. 2013). In cases where a high-quality reference genome is
available for the focal or a closely related species (e.g., ~tens of millions of years
divergent), RAD loci can be aligned to the reference, which can reduce data loss
when compared to the stringent filtering required in a de novo framework (Table 1;
Cosart et al. 2011). However, aligning to a poor quality or divergent reference
genome can result in informative loci being lost. Current best practices for RADseq
bioinformatics advise first building loci de novo, then aligning consensus loci to
the reference (Paris et al. 2017).

When prior genomic resources are available (such as a previous RADseq assess-
ment), targeted capture can be used to sequence data from a subset of previously
identified regions (Jones and Good 2016). Recent developments that combine
RADseq and capture methods (Ali et al. 2016; Hoffberg et al. 2016) have expanded
the accessibility of targeted capture and can be used to optimize genotyping
across individuals by ensuring consistent coverage of the same loci. In cases
where a modest number of SNPs (50-500) are needed, genotyping in thousands
by sequencing (GT-seq) can provide a means for genotyping SNPs in thousands of
individuals in a single lane of sequencing (Campbell et al. 2015). These methods are
especially useful for developing genetic monitoring panels (Flanagan et al. 2018;
Schwartz et al. 2007) since they maximize coverage of targeted markers while
minimizing cost per individual genotype. See Flanagan et al. (2018) and Benestan
et al. (2016) for more detailed overviews of analytical pipelines for reduced repre-
sentation and targeted sequencing methods, including data filtering, locus assembly
and alignment, and genotype and SNP calling.

Finally, when a high-quality, well-annotated reference genome is available and
the goal is to capture SNPs in genes of known function, exon capture can be used
(e.g., Roffler et al. 2016) (Table 1), though it is often more costly than other
approaches (Harvey et al. 2016; Manel et al. 2016). Exon capture can also target
ultra-conserved elements and expressed sequence tags (e.g., McCartney-Melstad
et al. 2016). Transcriptome sequencing is another option to identify transcribed
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portions of the genome; however, rigorous transcriptomic studies will be challenging
to implement in most wildlife species (Sect. 4, Table 1).

DNA requirements vary for these methods, though most anonymous and targeted
NGS sequencing protocols require 50-100 ng of high-quality DNA, which can
usually be satisfied with nonlethal blood or tissue samples. However, for very
small animals, such as invertebrates, whole individuals may have to be sacrificed
(e.g., Lozier 2014). Noninvasive genetic samples, including hair snags and fecal
pellets, have been widely used in microsatellite studies of wildlife species that are
difficult and/or expensive to capture (e.g., American black bear, Cushman et al.
2006). Unfortunately, the low levels of DNA present in these samples have posed a
challenge for NGS methods, though new techniques are being developed to facilitate
the use of these samples in genomic analyses (Andrews et al. 2018). For example, a
recent study successfully used NGS on hair samples from American pika (Ochotona
princeps), indicating that, with appropriate precautions and supporting information
(a genomic scaffold in this case), even small amounts of DNA (as little as 1 ng) can
be used for adaptive landscape genomics (Russello et al. 2015).

2.3  Environmental Data Production

Ideally, the environmental data component of GEA analysis should be developed
based on the physiology and ecology of the focal species and known or hypothesized
drivers of selection. When these factors are not well known, an exploratory approach
will be required using available biotic and abiotic predictors. Because of its focus on
local environmental conditions, adaptive landscape genomics does not necessarily
require continuous environmental surfaces (e.g., interpolated raster layers created
using a geographic information system, or GIS). However, these layers are often
the default environmental data sources since they cover broad geographic areas
(ensuring spatial coverage of sampled individuals and populations) and, for climate
data, include long-term temporal resolution (Leempoel et al. 2017). Especially for
long-lived wildlife species, sufficient temporal coverage in climate variables is
important to capture interannual variability that matches long-term selective
pressures. Most publicly available gridded data sets include data at these coarser
annual and decadal scales (e.g., CHELSA; Karger et al. 2017). By contrast, high
temporal resolution (e.g., daily data; TOPOFIRE; Holden et al. 2013) may be
necessary for some species and questions, since extremes, cumulative exposure,
and threshold events may be important selective pressures (e.g., Welbergen et al.
2008; Vasseur et al. 2014; Buckley and Huey 2016; Gardner et al. 2016). These
data are available, but usually on reduced spatial scales. The relatively coarse spatial
scale of these interpolated data sets (usually ~1 km resolution) can also be problem-
atic for smaller species, since these data cannot capture relevant microclimates
and can underestimate habitat and climatic heterogeneity (Nadeau et al. 2017).
In these cases, field-based sensors for site-specific data collection (e.g., HOBOs,
Onset Computer Corp.) and modeling may provide the highest spatial resolution
(e.g., Peterman and Semlitsch 2013), but these data will be limited by their reduced
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temporal component (i.e., limited to the time period during which data were
collected). Exceptions to this temporal data issue include major catastrophic or
selective events, such as severe drought or virulent disease (e.g., Grant and Grant
1993; Epstein et al. 2016). Finally, another option for site-specific climate data
with potentially long temporal resolution is weather station data (e.g., RAWS;
https://raws.dri.edu/); however, these data are typically sparse in space.

There are a large number of free climate and land cover GIS data sets available.
Caution and skepticism are warranted, however, since these data sets can vary
widely in their quality (Daly 2006). High-quality global data are available from
CHELSA (Karger et al. 2017) and the Consortium for Spatial Information (Www.
cgiar-csi.org/data) for climate and water balance and from EarthEnv (www.earthenv.
org) for land cover and vegetation. Other regional climate resources (mostly North
America) include TopoWx (Oyler et al. 2015), ClimateNA (Wang et al. 2016), and
water balance data through AdaptWest (Dobrowski et al. 2013) for North America
and Copernicus for global- to European-scale data (http://climate.copernicus.eu and
http://land.copernicus.eu). In addition, the growing availability of environmental
data from remotely sensed data products (e.g., http://earthdata.nasa.gov), including
climate and land use time series datasets, offers unprecedented opportunities in
landscape genomics to account for environmental variables (and changes in those
variables) influencing local adaptation.

Once available data are identified, the next step is to extract and/or calculate
relevant predictors. Whenever possible, it is best to use proximal (e.g., temperature,
precipitation) as opposed to distal (e.g., elevation, latitude) predictors, since proxi-
mal variables are more ecologically relevant and may decouple from their distal
proxies over time, for example, under climate change (Lookingbill and Urban 2005).
Many environmental predictors will be highly correlated with each other (e.g.,
Irl > 0.7, Dormann et al. 2013), which is statistically problematic for most GEA
methods and confounds interpretation. Methods for dealing with collinearity include
pruning predictors using a pairwise correlation matrix or variance inflation factor
(retaining the variable most relevant or ecologically interpretable) or using PCA to
reduce a large number of predictors into orthogonal synthetic predictors, though this
can limit ecological interpretation. Finally, because GEAs are correlative models,
environmental predictors identified as important by a GEA analysis may not be the
driving selective pressures. Collinear predictors that were removed during pruning
and other correlated but unmeasured biotic and abiotic conditions may also be
important (Rellstab et al. 2015).

2.4 Data Analysis with Genotype-Environment Associations

Genotype-environment association (GEA) analysis (also called environmental
association analysis) refers to a group of statistical analyses used in adaptive land-
scape genomics to partition neutral from potentially adaptive genetic variation. GEA
methods identify candidate adaptive loci based on associations between allele
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distributions and environmental variables hypothesized to drive selection, reflecting a
pattern of selected alleles at higher frequency in certain environments (reviewed
in Rellstab et al. 2015). This is in contrast to a population genomics approach, where
adaptive loci are identified by differentiating locus-specific patterns (caused by locus-
specific processes including selection) from the genome-wide pattern (caused by
genome-wide processes, such as genetic drift, demographic processes, and gene flow;
Luikart et al. 2003). These differentiation-based methods are useful for detecting
strong divergent selection (Storz 2005) and are especially valuable when environ-
mental predictors are not available or when the number of sampled populations is
small. Limitations of differentiation-based approaches include a requirement for
population-based sampling and a basis in theoretical population genetic models that
are violated by many empirical systems. By contrast, many GEA methods can be used
with either individual- or population-based sampling, which is advantageous when
environmental gradients are continuous or when populations are not clearly distin-
guishable (Jones et al. 2013). Additionally, most GEA methods do not use an
underlying population genetic model and so are not sensitive to the deviations
common in empirical systems. GEA methods are not limited to detecting divergent
selection, but can also detect weaker selective pressures, such as selection on
standing genetic variation (Forester et al. 2018; Fig. 2). Finally, the inclusion of
environmental predictors improves power when compared with differentiation-based
methods (De Mita et al. 2013; de Villemereuil et al. 2014; Rellstab et al. 2015).
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Fig. 2 Density distribution of Fgp values for SNPs identified in southern pygmy perch
(Nannoperca australis): 5,162 neutral and candidate adaptive SNPs (blue), 177 candidate loci
identified using Fsr outlier/differentiation-based methods (red), and 216 candidate loci identified
using GEA methods (green). The narrow Fgr distribution of outlier candidates with a high mean
Fgsr (~0.8) is indicative of divergent selection and allelic fixation, while the broader Fsr distribution
of GEA candidates with a lower mean Fgt (~0.6) is indicative of polygenic selection from standing
genetic variation. Figure from Brauer et al. (2016)
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However, differentiation-based tests can provide complementary information to
GEA results, since they can detect the impact of selective pressures that may not be
captured by the selected environmental predictors.

Both sets of methods are sensitive to neutral genetic structure, which can produce
spatial patterns that resemble selection, resulting in elevated false-positive rates in
the absence of correction. Most GEA methods incorporate an approach for control-
ling for neutral genetic structure, including covariance matrices, the probability of
membership from clustering or ordination analyses, spatial predictors, and other
spatial analyses such as trend surface analysis (Rellstab et al. 2015). These correc-
tions are applied in a diversity of GEA methods, most of which are univariate,
meaning they test one locus and one predictor variable at a time. These methods
include generalized linear models (e.g., Joost et al. 2007; Stucki et al. 2017), linear
mixed effects models (e.g., Coop et al. 2010; Frichot et al. 2013; Lasky et al. 2014;
Yoder et al. 2014), and nonparametric models (e.g., partial Mantel test, Hancock
et al. 2011). Univariate GEAs can produce elevated false-positive rates due to the
multiple comparisons required to test individual SNPs and predictors. Multiple test
corrections, such as Bonferroni, can be overly conservative (potentially removing
true-positive detections), while alternative correction methods, such as false discov-
ery rate (Benjamini and Hochberg 1995), rely on an assumption of a null distribution
of p-values, which may often be violated in empirical data sets. While these issues
should not discourage the use of univariate methods (though corrections should
be chosen carefully, see Frangois et al. (2016) for an overview), other statistical
approaches may be better suited to the high dimensionality of genomic data sets.

In particular, multivariate GEAs, which can analyze all loci and predictor vari-
ables simultaneously, are well suited to data sets comprising hundreds of individuals
sampled at many thousands of genetic markers. These methods can more effectively
detect multilocus selection since they consider how groups of markers covary in
response to environmental predictors (Rellstab et al. 2015; Forester et al. 2018).
This is important because many adaptive processes are expected to result in weak,
polygenic molecular signatures. These include selection on standing genetic varia-
tion, recent or contemporary selection that has not yet led to allele fixation, and
conditional neutrality (Yeaman and Whitlock 2011; Le Corre and Kremer 2012;
Savolainen et al. 2013; Tiffin and Ross-Ibarra 2014). Multivariate GEAs include
redundancy analysis (RDA), which was recently tested in a simulation framework
and showed a superior combination of high true-positive and low false-positive rates
while being robust to different demographic histories, sampling designs, and sample
sizes (Forester et al. 2018). While additional testing is needed, multivariate GEAs
show promise as a powerful complement to univariate detection approaches.

Finally, our understanding of the performance of GEA methods under realistic
genomic architectures and sampling effects has been limited by the relatively
simplistic simulation frameworks used to date. Additional testing of GEA methods
on more complex genetic architectures (e.g., conditional neutrality vs. antagonistic
pleiotropy, multilocus vs. polygenic selection) and realistic genomic sampling
conditions is needed (e.g., Yoder and Tiffin 2017). In sum, it is important to realize
that different approaches for detecting loci influenced by selection can yield different
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conclusions, and a common standard for reporting the analysis of adaptive genomic
data has yet to be developed (see Ahrens et al. 2018).

3 Applications and Potential of Adaptive Landscape
Genomics in Wildlife Research

Adaptive landscape genomics has been used in many studies to identify candidate
adaptive variation, its environmental drivers, and spatial distribution. While these
studies are important in that they provide a baseline for additional research, there are
still a limited number of wildlife studies that move beyond data generation to directly
address ecological and evolutionary questions and/or management issues. In this
section, we discuss recent applications of adaptive landscape genomics in wildlife
research and highlight notable case studies. We then follow up with areas for
advancement that have not yet been implemented in wildlife genomics.

3.1 Current Applications of Adaptive Landscape Genomics
in Wildlife Research

3.1.1 What Are the Ecological and Evolutionary Processes Underlying
Spatial Patterns of Neutral and Adaptive Genetic Variation?

Explicit investigation of how neutral and candidate adaptive genetic variation relate
to spatial and environmental variation can provide insight into the ecological and
evolutionary processes that generate observed genetic patterns. These patterns
include isolation by distance (IBD) and isolation by environment (IBE), which can
be explained by the processes of isolation by dispersal limitation and isolation by
adaptation, respectively (Orsini et al. 2013; Wang and Bradburd 2014). These
analyses can provide information on species biology, ecology, and evolutionary
history, including estimates of dispersal distance, biased dispersal (e.g., due to
fitness advantage or natal habitat preference), colonization history, natural or sexual
selection against immigrants, and reduced hybrid fitness. In a recent application,
Manthey and Moyle (2015) tested for patterns of IBD and IBE in white-breasted
nuthatches (Sitfa carolinensis) inhabiting the sky islands of the southeastern United
States. By investigating both neutral and candidate adaptive markers, they identified
IBE as the significant pattern structuring both neutral and adaptive markers, with an
absence of IBD. Extremes of temperature and precipitation structured environmental
adaptation due to nonrandom gene flow among populations, pointing to a generative
process of isolation by adaptation as a result of biased dispersal (i.e., birds selecting
more suitable environments).
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3.1.2 What Are the Relative Roles of Genetic Drift and Natural
Selection in Structuring Genetic Variation in Small Populations?

Genetic drift is expected to be the dominant genetic process in populations
with small effective sizes, constraining selection and lowering adaptive capacity
(e.g., Lande 1988; Willi et al. 2006). However, recent studies have suggested that,
while small populations show a decline in genetic variation due to drift, these
declines may not overwhelm selection or necessarily lower adaptive capacity
(Brauer et al. 2016; Funk et al. 2016; Wood et al. 2016). This could have important
implications for conservation and management of these populations, including
informing genetic rescue and assisted migration efforts (Sect. 3.2.1). Brauer et al.
(2016) provide a compelling example of retained adaptive divergence in spite of
strong genetic drift and geographic isolation in the threatened southern pygmy
perch (Nannoperca australis). Using univariate and multivariate GEAs, they
found signatures of parallel polygenic adaptation to environmental and physical
gradients that were replicated across demographically independent populations
(Fig. 2). The smaller and more isolated headwater populations had less standing
genetic variation at candidate adaptive loci in comparison to larger downstream
populations, pointing to these latter populations as sources for genetic rescue or
assisted migration efforts into recently and anthropogenically isolated populations.

3.1.3 How Can Knowledge of Adaptive Differentiation Inform
the Delineation of Conservation Units?

Genomic data can improve the delineation of conservation units through increased
resolution into neutral differentiation (e.g., Lah et al. 2016; Peters et al. 2016) and
characterization of adaptive differentiation (Funk et al. 2012; Prince et al. 2017;
Ruegg et al. 2018) (Fig. 3). For example, genomic data were used to identify neutral
and adaptive differentiation in Baltic Sea herring (Clupea harengus) where previous
studies using smaller genetic datasets had found little evidence for differentiation
(Guo et al. 2016). This study provided additional evidence that current herring
management units may have negative impacts on fisheries yields since they are
poorly aligned with biological units based on local adaptation to salinity and
temperature. As this case illustrates, adaptive differentiation can inform the delinea-
tion of ecotypes: populations (or subspecies) that are adapted to local environmental
conditions. Defining ecotypes can be especially important in conservation efforts
where the emphasis is not only on maintaining neutral genetic diversity but also
overall evolutionary potential (Harrisson et al. 2014). While adaptive differentiation
can be characterized using differentiation-based approaches (e.g., Cooke et al. 2014;
Moura et al. 2014), landscape genomics provides additional insight into the envi-
ronmental drivers of local adaptation, which can better inform conservation efforts
(e.g., Pavey et al. 2015). For example, a recent study of the willow flycatcher
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complex, including the endangered Southwestern willow flycatcher (Empidonax
traillii extimus), supported the validity of this subspecies classification based on
local adaptation related to temperature extremes (Ruegg et al. 2018). This study also
found that the Southwestern subspecies was at the greatest risk for climate-mediated
extinction due to high genomic vulnerability (a measure of the mismatch between
adaptive genotypes and future environmental conditions).
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3.1.4 How Can Adaptive Landscape Genomics Inform the Design
of Conservation Monitoring Programs?

Depending on the conservation needs of a species, a genomic monitoring plan may
be essential to effective management; however, there are few examples of genomic
monitoring in the published literature. The best monitoring plans identify criteria for
biologically significant change and develop a strategy for management intervention
given detection of this change prior to initiating monitoring (Flanagan et al. 2018;
Schwartz et al. 2007). This approach best ensures that monitoring will trigger timely
management interventions, rather than just documenting decline and possibly
extinction (Lindenmayer et al. 2013). An initial genomic assessment (e.g., RADseq
study) can be used to identify a subset of neutral and candidate adaptive markers
to be targeted for a monitoring panel using sequence capture or SNP arrays (e.g.,
Hohenlohe et al. 2011; Amish et al. 2012; Houston et al. 2014; Wright et al. 2015;
Aykanat et al. 2016). While monitoring of neutral genetic variation can inform
important parameters such as changes in genetic diversity and population size,
monitoring of candidate adaptive variation can provide information on the status
of adaptively divergent populations (Sect. 3.1.3) and management interventions such
as assisted gene flow (Sect. 3.2.2).

For example, Hess et al. (2015) transitioned an initial NGS assessment (Hess et al.
2013) into a robust and multifaceted monitoring program for declining Pacific
lamprey (Entosphenus tridentatus) (Fig. 4). They identified 96 neutral and candidate
adaptive markers that were diagnostic for parentage analysis, cryptic species iden-
tification, and characterization of neutral and candidate adaptive genetic variation.
These markers were incorporated into a SNP array and are currently being used to
monitor the effectiveness of a diverse set of management actions including translo-
cation, artificial propagation, and habitat restoration, as well as track population
size, facilitate species identification at early life stages, and link adaptive markers to
lamprey phenotypes (body size and migration timing). Appropriate sampling design
for temporal monitoring of genetic change is still not well understood and will
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and adaptive (right) SNPs for Columbia River Basin samples. Mantel tests indicate good represen-
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depend on the biology and demography of the species, the study objectives, and the
power of the markers and sampled individuals to detect change (Schwartz et al.
2007, Allendorf et al. 2008; Hoban et al. 2014). Simulations, an underutilized tool in
conservation management, will continue to play an important role in optimizing
sampling design for genomic monitoring (Balkenhol and Landguth 2011; Hoban
et al. 2013).

3.1.5 What Are the Genomic Implications of Range Expansion Under
Climate Change?

Range shifts are some of the best-documented responses to climate change,
with species across many taxa showing (sometimes idiosyncratic) changes in
their distribution in response to changing climatic conditions (Hickling et al. 2006;
Chen et al. 2011). Range expansions should leave predictable signals of founder
effects and allele surfing at neutral loci (Excoffier et al. 2009), accompanied by
changes in traits to facilitate adaptation and the rate of spread (Phillips et al. 2010).
Linking genomic signals of evolution to these phenotypic changes has been rare,
and it is not well understood how rapid trait changes on the expanding front are
mediated by allele frequencies within populations. Swaegers et al. (2015) addressed
these questions using a carefully planned adaptive landscape genomics study in
a range-expanding damselfly (Coenagrion scitulum), accompanied by existing
phenotypic data. By evaluating five different core-edge sets of populations, these
authors demonstrated replicated neutral changes predicted by theory in indepen-
dently established edge populations: founder effects, reduced gene flow, and higher
levels of genetic drift. Using candidate adaptive markers, they identified parallel
evolution for increased flight endurance in edge populations across four of the five
populations, indicating convergent evolution from a locus that was polymorphic in
the shared ancestral population (Fig. 5). Finally, using a multivariate GEA, the
authors identified a genomic signal of adaptation to changing thermal regimes.
This is one of only a few studies that has demonstrated a genetic basis to phenotypic
changes during range expansion in response to climate change.

3.1.6 Can We Predict the Spatial Distribution of Adaptive Genetic
Variation Under Changing Climates?

Species distribution models are commonly used in the ecological and conservation
literature to predict changes in species distributions in response to climate change
(e.g., Early and Sax 2011; Forester et al. 2013; Guisan et al. 2013; Hazen et al. 2013).
These models generally use a static species-climate relationship for prediction and
do not consider intraspecific variation in climate responses due to plasticity or local
adaptation. However, with the increasing availability of genetic data for species of
conservation concern, the incorporation of intraspecific variability into these models
is now possible (e.g., Ikeda et al. 2017). These genetically informed models have
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Fig. 5 (a) Genotype frequencies of candidate adaptive SNP 3368 in core and edge damselfly
(Coenagrion scitulum) populations. (b) Flight endurance for the three genotypes of SNP 3368
(log-transformed flight endurance in seconds with 95% confidence intervals). The GG genotype
was found at higher frequency in edge (expanding) populations and was associated with the highest
mean average flight endurance. Figure from Swaegers et al. (2015)

been used to predict where and when future climates may disrupt patterns of local
adaptation (Jay et al. 2012; Fitzpatrick and Keller 2015) and inform assessments of
adaptive capacity under future climate change (Razgour et al. 2018; Bay et al. 2018).
In a recent study, Creech et al. (2017) used a simulation approach to investigate the
spread of adaptive genotypes in desert bighorn sheep, a habitat specialist expected to
be threatened by habitat loss and further fragmentation due to climate change. In this
novel approach, landscape resistance models were developed for desert bighorn
sheep (Ovis canadensis nelsoni) in three different regions that varied in habitat
quantity and configuration, using data from neutral genetic markers (mostly nonin-
vasively collected). Simulations based on these resistance models were used to
investigate how the spread of an adaptive allele varied based on selection strength
and whether the adaptive variant was derived from standing genetic variation or a
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new mutation. Adaptation from standing genetic variation had a much higher
incidence of spread and likelihood of persistence than a novel mutation, especially
when landscapes were more highly connected (Fig. 6). These results are in line with
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Fig. 6 Simulated spread of an adaptive allele in populations of desert bighorn sheep (Ovis
canadensis nelsoni) in different regions of the United States over 100 years. Regions are Death
Valley in the northern Mojave Desert (DEVA), the Grand Canyon in northern Arizona (GRCA),
and the southern Mojave Desert (MOJA). Colored dots are individual locations with color gradient
reflecting the proportion of simulation Monte Carlo replicates in which the adaptive allele is present
(>1 copy) in each individual at year 100, assuming strong selection and a medium dispersal
threshold. Left and right columns show presence of the adaptive allele after novel mutation and
selection on standing genetic variation, respectively. Figure from Creech et al. (2017)



B. R. Forester et al.

empirical and conceptual work (reviewed in Hendry 2013) and highlight the impor-
tance of maintaining standing genetic variation in desert bighorn sheep populations,
as well as the potential need for assisted gene flow (see below) targeting multiple
locations in isolated populations.

3.2 Underutilized Applications of Adaptive Landscape
Genomics in Wildlife Research

There are a variety of questions and applications informed by adaptive landscape
genomics that have not yet been implemented in wildlife research, but which have
significant potential to improve our understanding of ecological and evolutionary
processes and management applications. Below we highlight the potential of adap-
tive landscape genomics for questions related to wildlife management.

3.2.1 Using Adaptive Landscape Genomics to Inform Genetic Rescue

The purpose of genetic rescue is to improve the viability of small, isolated, and
declining populations by increasing neutral genetic diversity through the movement
of individuals between populations (Whiteley et al. 2015). Genetic rescue can be
beneficial for populations that are at risk of or are currently experiencing deleterious
effects from inbreeding depression, and has been used successfully in a number of
high-profile conservation efforts (e.g., Florida panthers (Johnson et al. 2010); wolves
(Vila et al. 2003; Adams et al. 2011); and bighorn sheep (Miller et al. 2012)). The
main concern with genetic rescue is outbreeding depression, a reduction in fitness
due to mixing divergently adapted genotypes (Edmands 2007); however, recent
reviews have highlighted the potentially large benefits and limited risks when
genetic rescue is carefully implemented (Hedrick and Fredrickson 2010; Weeks
et al. 2011; Frankham 2015; Whiteley et al. 2015). Adaptive landscape genomics
can play an important role in minimizing the risks of outbreeding depression by
providing an assessment of the environmental and spatial factors that structure
adaptive genetic variation across populations. By identifying source populations
that minimize adaptive (and also environmental) divergence from the target popu-
lation, the risk of adaptive incompatibilities and outbreeding depression can be
reduced. While assessment of adaptive genetic differentiation is not a requirement
for a successful genetic rescue program, it provides additional insight into the
characteristics of target and potential source populations that can be used to maxi-
mize the effectiveness of this management intervention (Whiteley et al. 2015;
Fitzpatrick and Funk 2018). Since genetics studies in wildlife will increasingly use
NGS methods to develop molecular markers, incorporating adaptive variation in
plans for genetic rescue should become a more common approach.
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3.2.2 Using Adaptive Landscape Genomics to Inform Assisted
Gene Flow

In contrast to genetic rescue, assisted gene flow is a proactive management
technique that involves the directional movement of “preadapted” individuals
between populations (and within a species range) to facilitate adaptation to changing
conditions. It has been advocated for long-lived, sessile species such as trees (e.g.,
Steane et al. 2014) and species that have a limited ability to track climate conditions
that they are currently adapted to (Sgro et al. 2011; Aitken and Whitlock 2013).
Unlike genetic rescue, the target population for assisted gene flow should have a
large effective population size (to maximize the effectiveness of selection and
minimize the impact of genetic drift), and the source and target populations should
be divergent based on their adaptive genotypes, where the source population has
adaptive variation expected to be advantageous under future conditions in the target
population. The concerns about assisted gene flow include the disruption of local
adaptation; the loss of distinct, locally adapted lineages; and outbreeding depression.
Additionally, because NGS methods that sample the genome do not provide a
complete assessment of adaptation, it is possible to reduce fitness with introduced
individuals due to maladaptation to an unsampled adaptive parameter, in spite of
beneficial adaptation to changing climatic conditions. One option for addressing this
issue is to maximize available adaptive variation in source individuals by using a
“portfolio effect” or “composite provenancing” that covers a broader range of future
climate conditions as well as other, potentially unknown but important selective
parameters (Schindler et al. 2010; Sgro et al. 2011; Weeks et al. 2011; Aitken and
Whitlock 2013). However, for many populations and species that either lack the
capacity for long-distance movement or have no available suitable habitats to
disperse into, adaptation in place will be the only alternative to maladaptation,
extirpation, and extinction. In these cases, consideration of the potentially
far-reaching benefits and careful evaluation to minimize the risks of assisted gene
flow can provide an important option for the management of vulnerable populations
(Weeks et al. 2011; Aitken and Whitlock 2013).

3.2.3 Using Adaptive Landscape Genomics to Inform Site Prioritization
to Maximize Evolutionary Potential

Conservation plans are generally focused on protecting the maximum amount of
diversity (e.g., the number of different species) in the fewest number of sites
and/or at the lowest cost. By selecting sites with complementary sets of species
(i.e., sites that are most dissimilar), biodiversity protection can be maximized
while minimizing the number of sites in the network (Margules and Pressey
2000). Site prioritization can also be extended to intraspecific diversity to ensure
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Fig. 7 Pairs of populations of the common frog (Rana temporaria) chosen for conservation based
on different strategies: strategy N, protection of the two populations with the two highest neutral
diversities; strategy NC, protection of the two populations with the highest pairwise neutral
diversity; strategy A, protection of the two populations with the two highest population adaptive
indexes; and strategy AC, protection of the two populations with the highest pairwise population
adaptive indexes. NC and AC use the principle of complementarity applied to the neutral and
adaptive data, respectively, to maximize the breadth of conserved genetic variation. Figure from
Bonin et al. (2007)

sufficient protection of genetic diversity within species conservation plans (Bonin
etal. 2007) (Fig. 7). When neutral genetic data are available, the goal is most often to
prioritize populations that maximize the within and between group variability of the
species (e.g., Ottewell et al. 2016). However, with increasing pressures on species
to adapt to rapidly changing environmental conditions, conserving the maximum
amount of adaptive genetic diversity is also essential to ensure the evolutionary
potential of threatened species (Nicotra et al. 2015). The inclusion of adaptive
genetic variation into the site prioritization framework was first advocated a decade
ago by Bonin et al. (2007). However, few empirical examples have been published
in academic journals, which likely reflects the lack of genomic data for species of
conservation concern, though some studies may have been published in the gray
literature due to the applied nature of the work (Garner et al. 2016). The decreasing
costs of genomics should ensure a revival of this framework for informing conser-
vation plans.

3.2.4 Using Museum Collections to Better Understand Changes
in Adaptive Variation over Time

Museum collections represent a rich source of historical genetic variation that can be
invaluable in understanding the evolutionary consequences of recent environmental
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change in wildlife species (Holmes et al. 2016). For example, Miller and Waits
(2003) amplified eight neutral microsatellite markers in 110 museum samples of
Yellowstone grizzly bear to assess the impact of past anthropogenic isolation and
culling on future genetic viability of this population. The transition from these
genetic-scale museum studies to genomic-scale data that can be used to investigate
selection and adaptation has been hampered by the challenges of working with
highly degraded DNA. Fortunately, several recent approaches have been used to
develop genomic-scale marker sets, including adaptive markers, from museum
samples (Andrews et al. 2018), including targeted sequencing of immune response
loci in the Pale-headed Brushfinch (Hartmann et al. 2014), exon capture in alpine
chipmunks (Bi et al. 2013), and whole-genome sequencing in honey bees (Mikheyev
et al. 2015). These methods currently require more genomic information than
can be provided by a reduced representation NGS study, but increasing amounts
of genomic data (including reference genomes) for non-model species and falling
sequencing costs indicate that historical data may soon be an option for many
wildlife species. Techniques are even being developed for formalin-fixed samples
(characteristic of, e.g., amphibian, reptile, and fish specimens), though these
approaches are currently limited to neutral markers developed for phylogenomic
studies (Hykin et al. 2014; Ruane and Austin 2017).

3.2.5 Using Adaptive Landscape Genomics to Inform the Management
of Hybridization

Hybridization is a fundamental management problem addressed in conservation
genetics (Bohling 2016), and genomic methods are being increasingly used to
identify and manage hybridization at high resolution in a diversity of wildlife
species (e.g., Fitzpatrick et al. 2009; vonHoldt et al. 2011; Hohenlohe et al. 2013;
Kovach et al. 2016; Wayne and Shaffer 2016). However, natural and human-
mediated hybridization may also be an effective tool for improving the adaptive
capacity of threatened species in response to rapid anthropogenic change, such
as climate change (Hoffmann et al. 2015; Hamilton and Miller 2016). To our
knowledge there are no examples of managed hybridization in wildlife populations
with the specific goal of facilitating adaptive introgression, though experimental
(e.g., salt tolerance in yeast, Stelkens et al. 2014) and accidental (e.g., insecticide
resistance in mosquitos, Norris et al. 2015) cases demonstrate the power of hybrid-
ization to improve adaptive capacity in response to strong selective pressures. As
with assisted gene flow, adaptive landscape genomics could play an integral role in
determining appropriate source populations for managed adaptive introgression to
facilitate evolutionary resilience in the face of rapid environmental change.
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4 Future Research Avenues in Wildlife Landscape
Genomics: Improving and Moving Beyond
Genotype-Environment Associations

Adaptive landscape genomics has led to valuable insights in wildlife studies and can
be used to address important ecological and evolutionary questions and management
issues. Future studies will be able to choose from an even larger number of statistical
methods for conducting adaptive landscape genomics, and this choice will hopefully
be guided by emerging recommendations regarding their relative suitability for
addressing specific research questions (Rellstab et al. 2015; Balkenhol et al. 2017).
Here, we have largely focused on one type of analytical approach used in adapt-
ive landscape genomics, the analysis of genotype-environment associations. As
discussed above, GEA is a main component of most current landscape genomic
studies aiming to find relationships between selection-driven loci and environ-
mental heterogeneity. Nevertheless, we emphasize that using additional analytical
approaches and incorporating complementary data in wildlife research can improve
our understanding of adaptation (Table 1, Figs. 1 and 8). Some of these are already
in use in wildlife studies, such as replication of GEA sampling across gradients
(Sect. 2.1), the incorporation of a well-annotated reference genome (Sect. 2.2), and

>

Future landscape genomics
Genomic + environmental + trait data
(e.g., environmentally-stratified GWAS,
common gardens, epigenetic &
transcriptomic analyses)

comparatively high

Current landscape genomics
genomic + environmental data
(e.g., GEA, genetically-informed species
distribution models)

Population genomics
genomicdata only
(e.g., outlier tests)

Power to detect signatures of selection
Meaningfulness for conservation & management

comparatively low

comparatively low comparatively high
Data requirements
Logistical and analytical effort

Fig. 8 Analytical approaches to understanding local adaptation (ellipses). Their relative data and
analytical requirements (x-axis) and power and utility for conservation and management (y-axis)
range from comparatively low to comparatively high
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the use of simulations (Sect. 3.1.6). Simulations in particular are underutilized in
landscape genomics research, and recent applications illustrate their value in cor-
roborating empirical findings (e.g., Cooke et al. 2014) and in developing new
theories (reviewed in Landguth et al. 2015) (Table 1). Additionally, as sequencing
costs fall, whole-genome resequencing is becoming an option for some wildlife
species (e.g., Kardos et al. 2015; Toews et al. 2016; Therkildsen and Palumbi 2017),
providing increased marker density when compared to reduced representation
methods, in addition to identifying other genetic variation such as structural variants
(Fuentes-Pardo and Ruzzante 2017) (Table 1). However, the limited accessibility
and affordability of this approach over reduced representation methods makes
whole-genome resequencing less feasible for conservation and management appli-
cations in wildlife (Fuentes-Pardo and Ruzzante 2017).

4.1 Integrating Phenotypic Data Through Environmentally
Stratified GWAS and GEA

One of the major advantages of the GEA-based approach to adaptive landscape
genomics is that no phenotypic data are required. Nevertheless, natural selection acts
on the phenotype, not the genotype. Thus, our understanding of the processes that
shape patterns of adaptive genetic variation in heterogeneous environments will
likely not be complete without considering phenotypic variability. Because of this,
particularly interesting complements to GEA are analytical approaches that account
for phenotypic variability when assessing landscape influences on genomic varia-
tion. There are a few examples of adaptive landscape genomics studies in wildlife
that have used a post hoc approach to incorporating phenotypes, by correlating trait
data with candidate loci identified through GEA analysis (Swaegers et al. 2015;
Funk et al. 2016).

A more promising approach is to combine detections from GEA analysis with
those from genome-wide association studies (GWAS) that are conducted for many
individuals across environmental gradients. Whereas GEA methods look for rela-
tionships between genotypes and environment, GWAS uses statistical approaches to
test for relationships between phenotypes and genotypes. For example, Lasky et al.
(2015) used GEA associations with climate to predict GWAS-derived phenotypic
variation in adaptive traits in the important food crop Sorghum bicolor. In another
case, Berg and Coop (2014) combined GWAS with quantitative genetics and GEA
to detect signals of local adaptation in several human traits. Unless a reference
genome is available, the genes detected by GWAS are anonymous, i.e., their exact
locations on the genome and their functions are usually unknown. However, one
could argue that for the fate of individuals and populations, and for wildlife
conservation management, it is not usually crucial to identify the location and
function of adaptive genes, but rather to understand their effects on fitness. In either
case, linking the phenotype-genotype results of environmentally stratified GWAS
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with genotype-environment-derived GEA detections can improve the strength of
inference in adaptive landscape genomic studies, since independently detected and
overlapping loci are more likely to reflect true adaptive processes.

GWAS studies in wildlife species are currently somewhat limited, and (similar to
GWAS in other groups) their success in identifying genetic variation underlying
fitness-relevant phenotypes is mixed (e.g., Johnston et al. 2011; Santure et al. 2013;
Wenzel et al. 2016). However, in wildlife species where data on fitness-relevant
phenotypic traits can be collected, the integration of environmentally stratified
GWAS and GEA will provide greatly improved inference for adaptation that can
inform ecological, evolutionary, and management questions.

4.2 The Value of Experimental Manipulations in Informing
Assessments of Adaptation

Experimental manipulations provide the most direct evidence for the genetic basis of
a fitness-related trait and/or local adaptation (Savolainen et al. 2013; de Villemereuil
et al. 2016). Common gardens are used to rear individuals from different habitats/
environmental conditions under common controlled or field conditions. While
common gardens are designed to study the genetic basis of traits while controlling
for phenotypic plasticity, they can be confounded by genotype-by-environment
interactions (Kawecki and Ebert 2004; Merild and Hendry 2014), though replication
across environments can alleviate this problem (de Villemereuil et al. 2016). Recip-
rocal transplants are a type of common garden where individuals from different
environments are reared in both their native and non-native (introduced) environ-
ment. Reciprocal transplants measure the contribution of both genetic and environ-
mental variation to fitness and can be used to identify local adaptation. The most
robust inference for these methods comes from rearing multiple generations under
common conditions to reduce maternal effects (Kawecki and Ebert 2004), and using
individuals of known pedigree to facilitate quantitative genetic study (though esti-
mates of relatedness can be made using molecular data).

These stringent conditions will make experimental manipulations inaccessible
for most wildlife species due to challenges associated with rearing in controlled
conditions, limitations associated with listed species status, and other logistical
complications. Experimental studies do exist for wildlife species, including amphib-
ians (e.g., Berven 1982; Bernardo 1994) and salmonids (Fraser et al. 2011; Christie
et al. 2016), and it is these studies that provide the highest inferential strength for
understanding the functionality of genomic and phenotypic variation in an evolu-
tionary context.

When experimental methods are possible, there are multiple alternatives for
integrating these data with GEA results. For example, environmentally stratified
common gardens could be used as a follow-up to GEA to compare the fitness
(or related trait) of individuals from environmentally divergent habitats who carry
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or lack a candidate adaptive allele identified by GEA (Holderegger et al. 2008).
Replicating individuals within habitats that carry/do not carry the allele of interest
is important to control for divergent genetic backgrounds across populations, so this
approach would be most useful for candidate loci that have not diverged to fixation.
Another approach is to assess the relationship between candidate SNPs identified
with GEA and traits measured in a common garden (De Kort et al. 2014). Recently,
Lasky et al. (2018) developed a synthetic approach that integrates data from
multiple common gardens stratified across environments with GEA in a genome-
wide association model of genotype-by-environment interactions. This novel
approach uses imputed fitness values for GEA data to coherently synthesize evi-
dence from common gardens and GEA tests, increased power to detect signatures of
local adaptation.

4.3 Epigenetics as a Mechanism for Rapid Adaptive
Responses

Epigenetic modifications (i.e., phenotypic changes that are mediated by the regula-
tion of gene expression, rather than alterations in the DNA sequence) are influenced
by genome-environment interactions and can therefore shape patterns of adaptive
genomic variation in heterogeneous environments (Verhoeven et al. 2016; Whipple
and Holeski 2016). Epigenetic variation may also be a mechanism allowing rapid
adaptation to changing environmental conditions (via plasticity), even in the face of
small population sizes and low genetic diversity (Massicotte et al. 2011; Bernatchez
2016). However, our understanding of epigenetic processes in natural settings is
currently quite limited, and most population and quantitative genetic theory does not
include epigenetic effects. Method development in the field is proceeding quickly,
with newer approaches based on reduced representation sequencing possible in
species without a reference genome (e.g., Trucchi et al. 2016; van Gurp et al.
2016). These advances should make studies of DNA methylation (the most widely
studied epigenetic mechanism) more accessible in wildlife species, providing insight
into the role of environmentally induced epigenetic modifications in plastic
responses to environmental change. For example, a recent study identified a role
for epigenetic modifications in plastic responses of three reef-building corals to
ocean acidification and thermal stress, demonstrating a previously unknown adap-
tive response of these species to climate change (Dimond and Roberts 2016).
However, experimental designs such as multigenerational common gardens, which
are not feasible for most wildlife species, are ultimately needed to establish
transgenerational inheritance of epigenetic modifications (Whipple and Holeski
2016). This will constrain our understanding of the role of epigenetics in enhancing
the evolutionary potential of wildlife species in a management context.
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4.4 The Importance of Differential Gene Expression Across
Landscapes

Detailed landscape genomic inference can be derived from approaches that analyze
the functionality and expression of genes, such as transcriptome analyses (i.e.,
RNA-seq), across landscapes (Storfer et al. 2015). Because these approaches require
experimental work and high-quality gene annotation to establish robust relation-
ships between functional genomic variation and gene expression, they have been
most frequently applied to model species. While de novo implementations of
transcriptomics are available for non-model species (e.g., Haas et al. 2013), the
quality of inference from these studies is limited (Alvarez et al. 2015; Todd et al.
2016). The most robust experimental design for transcriptomic studies involves
controlled, hypothesis-driven, experimental treatments to identify the processes
underlying differential gene expression across relevant tissue types. This imposes
limitations for field-based studies of many wildlife species, though progress is being
made in investigating alternative, less destructive tissue sampling approaches
(Czypionka et al. 2015). While detecting differences in gene expression under
field conditions in wild populations is possible, inference is often confounded due
to the sensitivity of gene expression to environmental conditions. Field-based studies
therefore require very careful design and execution, (relatively expensive) biological
replication, and careful documentation of potentially confounding biological, envi-
ronmental, and laboratory effects (Todd et al. 2016). Even in these cases, field-based
RNA-seq studies are mostly confined to generating hypotheses for future research
(Todd et al. 2016). Despite these constraints, there are a few examples of common
garden approaches to documenting differential gene expression in wild species in a
climate change context (e.g., Barshis et al. 2013; O’Neil et al. 2014; Narum and
Campbell 2015; Thomas and Palumbi 2017), which illustrate the potential for
transcriptomic studies to inform adaptive capacity in response to climate change
(Hoffmann et al. 2015). Additionally, when there are existing transcriptomic
resources available, they can be used to help validate and suggest functional
relevance of loci detected with GEA (Szulkin et al. 2016).

Finally, a related sequencing method, whole-exome sequencing (WES), uses
transcriptomic resources to develop probes targeting exons (protein coding genes)
as well as functional but noncoding regions (Warr et al. 2015). WES, not to be
confused with exon capture (which targets subsets of the exome, usually based on an
annotated genome, e.g., Roffler et al. 2016), is currently restricted to humans and
other model species, as well as a few domesticated species and crops. WES is
unlikely to be applied in non-model wildlife species in the near future, though
exome resources developed for model and domesticated species could be leveraged
in studies of closely related species.
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5 Conclusions

Overall, GEA has already led to several exciting findings in wildlife landscape
genomics, and the rapid development of new and improved GEA methods and
software for their implementation will likely ensure their continuing role as a
workhorse for adaptive landscape genomics. However, we need to be careful not
to equate “landscape genomics” with “genotype-environment associations.” The
first is a scientific field, while the latter is a mere set of analytical tools. Several
authors have already argued that landscape genomics focusing on neutral processes
(i.e., “landscape genetics”) is not a distinct scientific field, but rather a collection of
new and more powerful methods to test old ideas that mainly stem from other
disciplines (e.g., Dyer 2015; Rissler 2016). Even though some of the important
“classic” population genetic concepts and theories are certainly still valid for land-
scape genomics, we agree that the theoretical and conceptual development in
both neutral and adaptive landscape genomics lags far behind the methodological
progress we have made.

As highlighted by Bernatchez (2016), theories of adaptive capacity and evolu-
tionary potential in nature have generally not been able to keep up with the fast
developments for gathering and analyzing large amounts of genomic data. Specif-
ically, most of the theories and models used by geneticists and evolutionary biolo-
gists do not account for spatiotemporal impacts of environmental heterogeneity in a
realistic manner and also seldom include the complex interrelationships of processes
impacting genomic variation (e.g., polygenic and balancing selection, genomic
architecture, epigenetics). Because of this, predictions from classical theories and
models often do not match the genomic patterns that we see in nature. Hence, it is
crucial to compare findings from empirical genomic studies to predictions derived
from existing theory and simulation studies. Contrasting expected genomic patterns
with those observed in field and experimental settings can shed light on the missing
pieces in our understanding of adaptive processes in heterogeneous and changing
environments.

This will also be vital for developing new theories and hypotheses that refine our
thinking about the links between environmental complexity, genomic variation, and
evolutionary processes. Such a theory-focused approach is not only important for the
future development of landscape genomics (Balkenhol et al. 2015; Dyer 2015) but is
also necessary to better inform conservation managers and policy-makers about the
most important challenges to expect under changing environmental conditions. Our
predictions of future evolutionary trajectories of populations and species require a
much better theoretical and conceptual understanding of how adaptive capacity and
evolutionary potential vary across groups with different life histories and ecological
niches. As stated before, future studies should evaluate whether and when such
detailed information is indeed needed to successfully manage wildlife populations.

Thus, the future of landscape genomics will hopefully move beyond the statistical
detection of associations between environmental and genetic data and mature toward
a field with a solid theoretical and conceptual foundation. Such progress has to go
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hand-in-hand with more holistic research approaches that combine (quasi-)
experimental study designs with simulations and empirical analyses that use the
full range of available tools for assessing environmental impacts on selection-driven
genetic and phenotypic variation and underlying processes. We particularly advo-
cate the integration of GWAS across environmental gradients, because understand-
ing the impacts of environmental heterogeneity on genomic variation that is relevant
for phenotypic variation can provide us with information more closely related to
fitness and population dynamics. Additionally, GWAS studies, though potentially
labor-intensive for the collection of phenotypic trait data, are more feasible in
wildlife species compared to other options for improving inference of local adapta-
tion (Table 1). Finally, we need to begin to move beyond the single-species studies
that are typical of adaptive landscape genomics to date. Considering multiple species
or entire communities in landscape genomics (i.e., community landscape genomics,
Hand et al. 2015) is clearly challenging but necessary because neutral and adaptive
genomic patterns are not only shaped by the physical characteristics of an area
(“landscape” in a strict sense) but also by the interactions among species. Landscape
community genomics could be facilitated by eDNA (environmental DNA)
approaches that rely on samples of, e.g., water or soil that contain genetic material
from wildlife that have been in contact with these environmental samples (Ficetola
et al. 2008). While current eDNA approaches do not yet allow population and
landscape genomic studies, future technological and analytical developments will
likely enable such applications (Bohmann et al. 2014).

Considering all of the abovementioned research approaches in adaptive landscape
genomics of wildlife will ultimately help us to not only quantify and predict genetic
patterns in changing environments but also to understand the function of these
patterns and their relevance for individual fitness, population dynamics, and species
persistence.
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