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Abstract

Identifying adaptive loci can provide insight into the mechanisms underlying local

adaptation. Genotype–environment association (GEA) methods, which identify these

loci based on correlations between genetic and environmental data, are particularly

promising. Univariate methods have dominated GEA, despite the high dimensional

nature of genotype and environment. Multivariate methods, which analyse many loci

simultaneously, may be better suited to these data as they consider how sets of

markers covary in response to environment. These methods may also be more

effective at detecting adaptive processes that result in weak, multilocus signatures.

Here, we evaluate four multivariate methods and five univariate and differentiation-

based approaches, using published simulations of multilocus selection. We found

that Random Forest performed poorly for GEA. Univariate GEAs performed better,

but had low detection rates for loci under weak selection. Constrained ordinations,

particularly redundancy analysis (RDA), showed a superior combination of low false-

positive and high true-positive rates across all levels of selection. These results were

robust across the demographic histories, sampling designs, sample sizes and weak

population structure tested here. The value of combining detections from different

methods was variable and depended on the study goals and knowledge of the dri-

vers of selection. Re-analysis of genomic data from grey wolves highlighted the

unique, covarying sets of adaptive loci that could be identified using RDA. Although

additional testing is needed, this study indicates that RDA is an effective means of

detecting adaptation, including signatures of weak, multilocus selection, providing a

powerful tool for investigating the genetic basis of local adaptation.
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1 | INTRODUCTION

Analysing genomic data for loci underlying local adaptation has

become common practice in evolutionary and ecological studies

(Hoban et al., 2016). These analyses can help identify mechanisms of

local adaptation and inform management decisions for agricultural,

natural resources, and conservation applications. Genotype–environ-

ment association (GEA) approaches are particularly promising for

detecting these loci (Rellstab, Gugerli, Eckert, Hancock, & Holdereg-

ger, 2015). Unlike differentiation outlier methods, which identify loci

with strong allele frequency differences among populations, GEA

approaches identify adaptive loci based on associations between

genetic data and environmental variables hypothesized to drive

selection. Benefits of GEA include the option of using individual-

based (as opposed to population-based) sampling and the ability to

make explicit links to the ecology of organisms by including relevant
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predictors. The inclusion of predictors can also improve power and

allows for the detection of selective events that do not produce high

genetic differentiation among populations (De Mita et al., 2013;

Rellstab et al., 2015; de Villemereuil, Frichot, Bazin, Franc�ois, &

Gaggiotti, 2014).

Univariate statistical methods have dominated GEA since their

first appearance (Mitton, Linhart, Hamrick, & Beckman, 1977). These

methods test one locus and one predictor variable at a time, and

include generalized linear models (e.g., Joost et al., 2007; Stucki

et al., 2016), variations on linear mixed-effects models (e.g., Coop,

Witonsky, Rienzo, & Pritchard, 2010; Frichot, Schoville, Bouchard, &

Franc�ois, 2013; Lasky et al., 2014; Yoder et al., 2014) and nonpara-

metric approaches (e.g., partial Mantel, Hancock et al., 2011). While

these methods perform well, they can produce elevated false-posi-

tive rates in the absence of correction for multiple comparisons, an

issue of increased importance with large genomic data sets. Correc-

tions such as Bonferroni can be overly conservative (potentially

removing true-positive detections), while alternative correction

methods, such as false discovery rate (FDR, Benjamini & Hochberg,

1995), rely on an assumption of a null distribution of p-values, which

may often be violated for empirical data sets. While these issues

should not discourage the use of univariate methods (though correc-

tions should be chosen carefully, see Franc�ois, Martins, Caye, and

Schoville (2016) for a recent overview), other analytical approaches

may be better suited to the high dimensionality of modern genomic

data sets.

In particular, multivariate approaches, which analyse many loci

simultaneously, are well suited to data sets comprising hundreds of

individuals sampled at many thousands of genetic markers. Com-

pared to univariate methods, these approaches are thought to more

effectively detect multilocus selection as they consider how groups

of markers covary in response to environmental predictors (Rellstab

et al., 2015). This is important because many adaptive processes are

expected to result in weak, multilocus molecular signatures due to

selection on standing genetic variation, recent/contemporary selec-

tion that has not yet led to allele fixation, and conditional neutrality

(Le Corre & Kremer, 2012; Savolainen, Lascoux, & Meril€a, 2013; Tif-

fin & Ross-Ibarra, 2014; Yeaman & Whitlock, 2011). Identifying the

relevant patterns (e.g., coordinated shifts in allele frequencies across

many loci) that underlie these adaptive processes is essential to both

improving our understanding of the genetic basis of local adaptation,

and advancing applications of these data for management, such as

conserving the evolutionary potential of species (Harrisson, Pavlova,

Telonis-Scott, & Sunnucks, 2014; Lasky et al., 2015; Savolainen

et al., 2013). While multivariate methods may, in principle, be better

suited to detecting these shared patterns of response, they have not

yet been tested on common data sets simulating multilocus adapta-

tion, limiting confidence in their effectiveness on empirical data.

Here, we evaluate a set of these methods, using published simu-

lations of multilocus selection (Lotterhos & Whitlock, 2014, 2015).

We compare power using empirical p-values and evaluate false-posi-

tive rates based on cut-offs used in empirical studies. We follow up

with a test of three of these methods for their ability to detect weak

multilocus selection, as well as an assessment of the common prac-

tice of combining detections across multiple tests. We investigate

the effects of correction for weak population structure in the best-

performing method, redundancy analysis (RDA), and follow up with

an application of RDA to an empirical data set from grey wolves.

We find that the constrained ordinations we tested, in particular

RDA, maintain the best balance of true- and false-positive rates

across a range of demographies, sampling designs, sample sizes and

selection levels and can provide unique insight into the processes

driving selection and the multilocus architecture of local adaptation.

2 | METHODS

2.1 | Multivariate approaches to GEA

Multivariate statistical techniques, including ordinations such as prin-

cipal components analysis (PCA), have been used to analyse genetic

data for over 50 years (Cavalli-Sforza, 1966). Indirect ordinations like

PCA (which do not use predictors) use patterns of association within

genetic data to find orthogonal axes that fully decompose the

genetic variance. Constrained ordinations extend this analysis by

restricting these axes to combinations of supplied predictors (Jom-

bart, Pontier, & Dufour, 2009; Legendre & Legendre, 2012). When

used as a GEA, a constrained ordination is essentially finding orthog-

onal sets of loci that covary with orthogonal multivariate environ-

mental patterns. By contrast, a univariate GEA is testing for single-

locus relationships with single environmental predictors. The use of

constrained ordinations in GEA goes back as far as Mulley, James,

and Barker (1979), with more recent applications to genomic data

sets in Lasky et al. (2012), Forester, Jones, Joost, Landguth, and

Lasky (2016) and Brauer, Hammer, and Beheregaray (2016). In this

analysis, we test two promising constrained ordinations, redundancy

analysis (RDA) and distance-based redundancy analysis (dbRDA). We

also test an extension of RDA that uses a preliminary step of sum-

marizing the genetic data into sets of covarying markers (Bourret,

Dionne, & Bernatchez, 2014). We do not include canonical corre-

spondence analysis, a constrained ordination that is best suited to

modelling unimodal responses, although this method has been used

to analyse microsatellite data sets (e.g., Angers, Magnan, Plante, &

Bernatchez, 1999; Grivet, Sork, Westfall, & Davis, 2008).

Random Forest (RF) is a machine-learning algorithm that is

designed to identify structure in complex data and generate accurate

predictive models. It is based on classification and regression trees

(CART), which recursively partition data into response groups based

on splits in predictors variables. CART models can capture interac-

tions, contingencies and nonlinear relationships among variables, dif-

ferentiating them from linear models (De’ath & Fabricius, 2000). RF

reduces some of the problems associated with CART models (e.g.,

overfitting and instability) by building a “forest” of classification or

regression trees with two layers of stochasticity: random bootstrap

sampling of the data and random subsetting of predictors at each

node (Breiman, 2001). This provides a built-in assessment of predic-

tive accuracy (based on data left out of the bootstrap sample) and
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variable importance (based on the change in accuracy when covari-

ates are permuted). For GEA, variable importance is the focal statis-

tic, where the predictor variables used at each split in the tree are

molecular markers, and the goal is to sort individuals into groups

based on an environmental category (classification) or to predict

home environmental conditions (regression). Markers with high vari-

able importance are best able to sort individuals or predict environ-

ments. RF has been used in a number of recent GEA and GWAS

studies (e.g., Brieuc, Ono, Drinan, & Naish, 2015; Holliday, Wang, &

Aitken, 2012; Laporte et al., 2016; Pavey et al., 2015), but has not

yet been tested in a GEA simulation framework.

We compare these multivariate methods to the two differentia-

tion-based and three univariate GEA methods tested by Lotterhos

and Whitlock (2015): the XTX statistic from Bayenv2 (G€unther &

Coop, 2013), PCAdapt (Duforet-Frebourg, Bazin, & Blum, 2014),

latent factor mixed models (LFMM, Frichot et al., 2013) and two

GEA-based statistics (Bayes factors and Spearman’s q) from Bayen-

v2. We also include generalized linear models (GLM), a regression-

based GEA that does not use a correction for population structure.

2.2 | GEA implementation

2.2.1 | Constrained ordinations

We tested RDA and dbRDA as implemented by Forester et al.

(2016). RDA is a two-step process in which genetic and environ-

mental data are analysed using multivariate linear regression, pro-

ducing a matrix of fitted values. Then, PCA of the fitted values is

used to produce canonical/constrained axes, which are linear com-

binations of the predictors (van den Wollenberg, 1977). We cen-

tred and scaled genotypes for RDA (i.e., mean = 0, SD = 1; see

Jombart et al., 2009 for a discussion of scaling genetic data for

ordinations). Distance-based redundancy analysis is similar to RDA

but allows for the use of non-Euclidian dissimilarity indices.

Whereas RDA can be loosely considered as a PCA constrained by

predictors, dbRDA is analogous to a constrained principal coordi-

nate analysis (PCoA, or a PCA on a non-Euclidean dissimilarity

matrix). For dbRDA, we calculated the distance matrix using Bray–

Curtis dissimilarity (Bray & Curtis, 1957), which quantifies the dis-

similarity among individuals based on their multilocus genotypes

(equivalent to one minus the proportion of shared alleles between

individuals). For both methods, SNPs are modelled as a function of

predictor variables, producing as many constrained axes as predic-

tors. We identified outlier loci on the constrained ordination axes

based on the “locus score,” which represents the coordinates/load-

ing of each locus in the ordination space. For simulation data, only

one predictor variable is used, so we identify outlier loci on this

one constrained axis. For the empirical data set, which uses many

predictors, we identified outlier loci on significant constrained axes

(see below for details). We use rda for RDA and capscale for

dbRDA in the VEGAN, version 2.3-5 package (Oksanen et al., 2013)

in R version 3.2.5 (R Development Core Team, 2015) for this and

all subsequent analyses.

2.2.2 | Redundancy analysis of components

This method, described by Bourret et al. (2014), differs from the

approaches described above in using a preliminary step that summa-

rizes the genotypes into sets of covarying markers, which are then

used as the response in RDA. The idea is to identify from these sets

of covarying loci only the groups that are most strongly correlated

with environmental predictors. We began by ordinating SNPs into

principal components (PCs) using prcomp in R on the scaled data,

producing as many axes as individuals. Following Bourret et al.

(2014), we used parallel analysis (Horn, 1965) to determine how

many PCs to retain. Parallel analysis is a Monte Carlo approach in

which the eigenvalues of the observed components are compared to

eigenvalues from simulated data sets that have the same size as the

original data. We used 1,000 random data sets to generate the dis-

tribution under the null hypothesis and retained components with

eigenvalues greater than the 99th percentile of the eigenvalues of

the simulated data (i.e., a significance level of 0.01), using the HORNPA

package, version 1.0 (Huang, 2015).

Next, we applied a varimax rotation to the PC axes, which maxi-

mizes the correlation between the axes and the original variables (in

this case, the SNPs). Note that once a rotation is applied to the PC

axes, they are no longer “principal” components (i.e., axes associated

with an eigenvalue/variance), but simply components. We then used

the retained components as dependent variables in RDA, with envi-

ronmental variables used as predictors. Next, components that were

significantly correlated with the constrained axis were retained. Sig-

nificance was based on a cut-off (a = 0.05) corrected for sample

sizes using a Fisher transformation as in Bourret et al. (2014). Finally,

SNPs were correlated with these retained components to determine

outliers. We call this approach redundancy analysis of components

(cRDA).

2.2.3 | Random Forest

The Random Forest approach implemented here builds off of work

by Goldstein, Hubbard, Cutler, and Barcellos (2010), Holliday et al.

(2012), and Brieuc et al. (2015). This three-step approach is imple-

mented separately for each predictor variable. The environmental

variable used in this study was continuous, so RF models were built

as regression trees. For categorical predictors (e.g., soil type), classifi-

cation trees would be used, which require a different parameteriza-

tion (important recommendations for this case are provided in

Goldstein et al., 2010).

First, we tuned the two main RF parameters, the number of trees

(ntrees) and the number of predictors sampled per node (mtry). We

tested a range of values for ntrees in a subset of the simulations and

found that 10,000 trees were sufficient to stabilize variable impor-

tance (note that variable importance requires a larger number of

trees for convergence than error rates, Goldstein et al., 2010). We

used the default value of mtry for regression (number of predictors/

3, equivalent to ~3,330 SNPs in this case) after checking that

increasing mtry did not substantially change variable importance or
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the per cent variance explained. In a GEA/GWAS context, larger val-

ues of mtry reduce error rates, improve variable importance esti-

mates and lead to greater model stability (Goldstein et al., 2010).

Because RF is a stochastic algorithm, it is best to use multiple

runs, particularly when variable importance is the parameter of inter-

est (Goldstein et al., 2010). We begin by building three full RF mod-

els using all SNPs as predictors, saving variable importance as mean

decrease in accuracy for each model. Next, we sampled variable

importance from each run with a range of cut-offs, pulling the most

important 0.5%, 1.0%, 1.5% and 2.0% of loci. These values corre-

spond to approximately 50/100/150/200 loci that have the highest

variable importance. For each cut-off, we then created three addi-

tional RF models, using the average per cent variance explained

across runs to determine the best starting number of important loci

for step 3. This step removes clearly unimportant loci from further

consideration (i.e., “sparsity pruning,” Goldstein et al., 2010).

Third, we doubled the best starting number of loci from step 2;

this is meant to accommodate loci that may have low marginal

effects (Goldstein et al., 2010). We then built three RF models with

these loci and recorded the mean variance explained. We removed

the least important locus in each model and recalculated the RF

models and mean variance explained. This procedure continues until

two loci remain. The set of loci that explain the most variance are

the final candidates. Candidates are then combined across runs to

identify outliers.

2.2.4 | Differentiation-based and univariate GEA
methods

For the two differentiation-based and the Bayenv2-based GEA

methods, we compared power directly from the results provided in

Lotterhos and Whitlock (2015). PCAdapt is a differentiation-based

method that concurrently identifies outlier loci and population struc-

ture using latent factors (Duforet-Frebourg et al., 2014). The XTX

statistic from Bayenv2 (G€unther & Coop, 2013) is an FST analog that

uses a covariance matrix to control for population structure. The

two Bayenv2 GEA statistics (Bayes factors and Spearman’s q) also

use the covariance matrix to control for population structure, while

identifying candidate loci based on log-transformed Bayes factors

and nonparametric correlations, respectively. Details on these meth-

ods and their implementation are provided in Lotterhos and Whit-

lock (2015).

We reran latent factor mixed models, a GEA approach that con-

trols for population structure using latent factors, using updated

parameters as recommended by the authors (O. Franc�ois, personal
communication). We tested values of K (the number of latent fac-

tors) ranging from one to 25 using a sparse non-negative matrix fac-

torization algorithm (Frichot, Mathieu, Trouillon, Bouchard, &

Franc�ois, 2014), implemented as function snmf in the package LEA,

version 1.2.0 (Frichot & Franc�ois, 2015). We plotted the cross-

entropy values and selected K based on the inflection point in these

plots; when the inflection point was not clear, we used the value

where additional cross-entropy loss was minimal. We parameterized

LFMM models with this best estimate of K, and ran each model ten

times with 5,000 iterations and a burn-in of 2,500. We used the

median of the squared z-scores to rank loci and calculate a genomic

inflation factor (GIF) to assess model fit (Franc�ois et al., 2016; Fri-

chot & Franc�ois, 2015). The GIF is used to correct for inflation of z-

scores at each locus, which can occur when population structure or

other confounding factors are not sufficiently accounted for in the

model (Franc�ois et al., 2016). The GIF is calculated by dividing the

median of the squared z-scores by the median of the chi-squared

distribution. We used the LEA and Q-VALUE, version 2.2.2 (Storey, Bass,

Dabney, & Robinson, 2015) packages in R. Finally, we ran generalized

linear models (GLM) on individual allele counts using a binomial fam-

ily and logistic link function for comparison with LFMM. Full K and

GIF results are presented in Table S1.

2.3 | Simulations

We used a subset of simulations published by Lotterhos and Whit-

lock (2014, 2015). Briefly, four demographic histories are repre-

sented in these data, each with three replicated environmental

surfaces (Figure S1): an equilibrium island model (IM), equilibrium

isolation by distance (IBD) and nonequilibrium isolation by distance

with expansion from one (1R) or two (2R) refugia. In all cases,

demography was independent of selection strength, which is analo-

gous to simulating soft selection (Lotterhos & Whitlock, 2014). Hap-

loid, biallelic SNPs were simulated independently, with 9,900 neutral

loci and 100 under selection. Note that haploid SNPs will yield half

the information content of diploid SNPs (Lotterhos & Whitlock,

2015). The mean of the environmental/habitat parameter had a

selection coefficient equal to zero and represented the background

across which selective habitat was patchily distributed (Figure S1).

Selection coefficients represent a proportional increase in fitness of

alleles in response to habitat, where selection is increasingly positive

as the environmental value increases from the mean, and increas-

ingly negative as the value decreases from the mean (Lotterhos &

Whitlock, 2014; Figure S1). This landscape emulates a weak cline,

with a north–south trend in the selection surface. Of the 100 adap-

tive loci, most were under weak selection. For the IBD scenarios,

selection coefficients were 0.001 for 40 loci, 0.005 for 30 loci, 0.01

for 20 loci and 0.1 for 10 loci. For the 1R, 2R and IM scenario,

selection coefficients were 0.005 for 50 loci, 0.01 for 33 loci and

0.1 for 17 loci. Note that realized selection varied across demogra-

phies, so results across demographic histories are not directly com-

parable, and some simulations therefore have fewer than 100 loci

under selection (Lotterhos & Whitlock, 2015).

We used the following sampling strategies and sample sizes from

Lotterhos and Whitlock (2015): random, paired, and transect strate-

gies, with 90 demes sampled, and 6 or 20 individuals sampled per

deme. Paired samples (45 pairs) were designed to maximize environ-

mental differences between locations while minimizing geographic

distance; transects (nine transects with ten locations) were designed

to maximize environmental differences at transect ends (Lotterhos &

Whitlock, 2015). Overall, we used 72 simulations for testing. We
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assessed trend in neutral loci using linear models of allele frequen-

cies within demes as a function of coordinates. We evaluated the

strength of local adaptation using linear models of allele frequencies

within demes as a function of environment. Note that the Lotterhos

and Whitlock (2014, 2015) simulations assigned SNP genotypes to

individuals within a population sequentially (i.e., the first few individ-

uals would all get the same allele until its target frequency was

reached, the remaining individuals would get the other allele). This

creates artefacts (e.g., artificially low observed heterozygosity) and

may affect statistical error rates when subsampling individuals or

performing analyses at the individual level. As recommended by K.

Lotterhos (personal communication), we avoided these problems by

randomizing allele counts for each SNP among individuals within

each population. The habitat surface, which imposed a continuous

selective gradient on non-neutral loci, was used as the environmental

predictor.

2.4 | Evaluation statistics

In order to equitably compare power (true-positive detections out of

the number of loci under selection) across these methods, we calcu-

lated empirical p-values using the method of Lotterhos and Whitlock

(2015). In this approach, we first built a null distribution based on

the test statistics of all neutral loci and then generated a p-value for

each selected locus based on its cumulative frequency in the null

distribution. We then converted empirical p-values to q-values to

assess significance, using the same q-value cut-off (0.01) as Lotter-

hos and Whitlock (2015). We used code provided by Lotterhos to

calculate empirical p-values (code provided in Supplemental Informa-

tion).

Because false-positive rates (FPRs) are not very informative for

empirical p-values (rates are universally low, see Lotterhos & Whit-

lock, 2015 for a discussion), we applied cut-offs (e.g., thresholds for

statistical significance) to assess both true- and false-positive rates

across methods. While power is important, determining FPRs is also

an essential component of assessing method performance, as high

power achieved at the cost of high FPRs is problematic. Because

cut-offs differ across methods, we tested a range of commonly used

thresholds for each method and chose the approach that performed

the “best” (i.e., best balance of TPR and FPR). Note that cut-offs

can be adjusted for empirical studies based on the research goals

and tolerance for TP and FP detections, and the “best” cut-off will

not be known for empirical data sets. For each cut-off tested, we

calculated the TPR as the number of correct positive detections out

of the number possible, and the FPR as the number of incorrect

positive detections out of 9,900 possible. For the main text, we

present results from the best cut-off for each method; full results

for all cut-offs tested are presented in the Supplemental Informa-

tion. For constrained ordinations (RDA and dbRDA), we identified

outliers as SNPs with a locus score �2.5 and 3 SD from the mean

score of each constrained axis. For cRDA, we used cut-offs for

SNP–component correlations of a = 0.05, 0.01 and 0.001, corrected

for sample sizes using a Fisher transformation as in Bourret et al.

(2014). For GLM and LFMM, we compared two Bonferroni-cor-

rected cut-offs (0.05 and 0.01) and three FDR cut-offs (0.01, 0.05,

and 0.1). We do not apply cut-offs to RF results, as this model does

not assign scores to the full list of SNPs. Instead, candidate SNPs

identified by RF are returned as a subset of SNPs that explain the

most variance in the data (including both true- and false-positive

detections).

2.5 | Weak selection

We compared the best-performing multivariate methods (RDA,

dbRDA and cRDA) for their ability to detect signals of weak selec-

tion (s = 0.005 and s = 0.001). All tests were performed as described

above, after removing loci under strong (s = 0.1) and moderate

(s = 0.01) selection from the simulation data sets. The number of loci

under selection in these cases ranged from 43 to 76.

2.6 | Combining detections

We compared the effects of combining detections (i.e., looking for

overlap) using cut-off results from two of the best-performing meth-

ods, RDA and LFMM. We also included a scenario in which a sec-

ond, uninformative predictor (the x-coordinate of each individual) is

included in the RDA and LFMM tests. This predictor is analogous to

including an environmental variable hypothesized to drive selection

that covaries with longitude.

2.7 | Correction for population structure in RDA

To determine how explicit modelling of population structure affects

the performance of the best-performing multivariate method, RDA,

we accounted for the weak levels of population structure present in

these simulations using three approaches: (i) partialling out significant

spatial eigenvectors not correlated with the habitat predictor, (ii) par-

tialling out all significant spatial eigenvectors and (iii) partialling out

ancestry coefficients. The spatial eigenvector procedure uses Moran

eigenvector maps (MEM) as spatial predictors in a partial RDA.

MEMs provide a decomposition of the spatial relationships among

sampled locations based on a spatial weighting matrix (Dray, Legen-

dre, & Peres-Neto, 2006). We used spatial filtering to determine

which MEMs to include in the partial analyses (Dray et al., 2012).

Briefly, this procedure begins by applying a principal coordinate anal-

ysis (PCoA) to the genetic distance matrix, which we calculated using

Bray–Curtis dissimilarity. We used the broken-stick criterion (Legen-

dre & Legendre, 2012) to determine how many genetic PCoA axes

to retain. Retained axes were used as the response in a full RDA,

where the predictors included all MEMs. Forward selection (Blan-

chet, Legendre, & Borcard, 2008) was used to reduce the number of

MEMs, using the full RDA-adjusted R2 statistic as the threshold. In

the first approach, retained MEMs that were significantly correlated

with environmental predictors were removed (a = 0.05/number of

MEMs), and the remaining set of significant MEMs were used as

conditioning variables in RDA. Note that this approach will be liberal
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in removing MEMs correlated with environment. In the second

approach, all significant MEMs were used as conditioning variables,

the most conservative use of MEMs. We used the SPDEP, version

0.6-9 (Bivand, Hauke, & Kossowski, 2013) and ADESPATIAL, version

0.0-7 (Dray et al., 2016) packages to calculate MEMs. For the third

approach, we used individual ancestry coefficients as conditioning

variables. We used function snmf in the LEA package to estimate indi-

vidual ancestry coefficients, running five replicates using the best

estimate of K, and extracting individual ancestry coefficients from

the replicate with the lowest cross-entropy.

We also applied corrections to RF models using individual ances-

try coefficients, correcting both environment alone as well as geno-

types and environment (Table S2). For genotypes, we used the

residuals from logistic regression of SNP counts against ancestry

coefficients. For environment, we used the residuals from linear

models of environment against ancestry coefficients. These residuals

were used as inputs into the RF framework described above.

2.8 | Empirical data set

To provide an example of the use and interpretation of RDA as a

GEA, we re-analysed data from 94 North American grey wolves

(Canis lupus) sampled across Canada and Alaska at 42,587 SNPs

(Schweizer et al., 2016). These data show similar global population

structure to the simulations analysed here: wolf data FST = 0.09;

average simulation FST = 0.05. We reduced the number of environ-

mental covariates originally used by Schweizer et al. (2016) from 12

to eight to minimize collinearity among them (e.g., |r| < 0.7). One

predictor, land cover, was removed because the distribution of cover

types was heavily skewed towards two of the ten types. Missing

data levels were low (3.06%). Because RDA requires complete data

frames, we imputed missing values by replacing them with the most

common genotype across individuals. Significant constrained axes

were identified using 999 permutations of the response data and a

p-value threshold of .05. We identified candidate adaptive loci as
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SNPs loading �3 SD from the mean loading of these significant RDA

axes. We then identified the covariate most strongly correlated with

each candidate SNP (i.e., highest correlation coefficient), to group

candidates by potential driving environmental variables. A detailed R

tutorial/vignette on the application of RDA to the wolf data set is

available at http://popgen.nescent.org/2018-03-27_RDA_GEA.html.

3 | RESULTS

3.1 | Empirical p-value results

Note that these RDA results do not include correction for population

structure; those results are presented in a separate section below.

Power across the three ordination techniques was comparable, while

power for RF was relatively low (Figure 1). Ordinations performed

best in IBD, 1R, and 2R demographies, with the larger sample size

improving power for the IM demography. Within ordination tech-

niques, RDA and cRDA had slightly higher detection rates compared

to dbRDA; subsequent comparisons are made using RDA results.

Except for a few cases in the IM demography, the power of RDA

was generally higher than univariate GEAs (Figure 2). Of the univari-

ate methods, GLM had the highest overall power, while LFMM had

reduced power for the IBD demography. Power from the Bayes Fac-

tor (Bayenv2) was generally lower than RDA across all demogra-

phies. Finally, RDA had overall higher power than the two

differentiation-based methods (Figure 3), with the exception of the

IBD demography, where power was high for all methods.

Among the methods with the highest overall power, all per-

formed well at detecting loci under strong selection (Figures 4, S2

and S3). Detection rates for loci under moderate and weak selection

were highest for ordination methods, with RDA and cRDA having

the overall highest detection rates. RF had the lowest detection
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rates across selection levels, particularly for the smaller sample size

(Figure S2). Detection of moderate and weakly selected loci was

lower and more variable for univariate methods, especially LFMM,

where detection was dependent on demography and sampling

scheme.

3.2 | Weak selection

We compared the three ordination methods for their power to

detect only weak loci in the simulations (Figure 5). Power from

RDA was higher when all selected loci were included, especially

for the IM demography. Power using only weakly selected loci

was comparable between RDA and dbRDA, with power slightly

higher for RDA in most cases. cRDA was comparable to RDA for

the IBD and 2R demographies, but had very low to no power in

the IM demography, and the 1R demography with the larger sam-

ple size.

3.3 | Cut-off results

We compared cut-off results for the methods with the highest over-

all power: RDA, dbRDA, cRDA, GLM and LFMM (results for RF are

provided in Table S2). The best-performing cut-offs (i.e., cut-offs that

balance TPRs and FPRs) were as follows: RDA/dbRDA, �3 SD;

cRDA, a = 0.001; GLM, Bonferroni = 0.01, and LFMM, FDR = 0.05

(Figures S4–S7). We did not choose the FDR cut-off for GLMs as

GIFs indicated that the test p-values were not appropriately

calibrated (i.e., many GIFs must larger than 1, Table S1). For some

scenarios, LFMM GIFs were less than one (indicating a conservative

correction for population structure, Table S1). We reran LFMM mod-

els with the best estimate of K minus one (i.e., K � 1) to determine

whether a less conservative correction would influence LFMM

results. Because there was no consistent improvement in power or

TPR/FPRs using K � 1 (Tables S3–S4), all subsequent results refer to

LFMM runs using the best estimate of K.

Full cut-off results for each method are presented in the Supple-

mentary Information (Figure S4–S7). Cut-off FPRs were highest for

cRDA and GLM (Figure 6). By contrast, RDA and dbRDA had mostly

zero FPRs, with slightly higher FPRs for LFMM. Within these three

low-FPR methods, RDA maintained the highest TPRs, except in the

IM demography, where LFMM maintained higher power. LFMM was

more sensitive to sampling design than the other methods, with

more variation in TPRs across designs.

3.4 | Combining detections

We compared the univariate LFMM and multivariate RDA cut-off

results for overlap and differences in their detections using both

the habitat predictor only, and the habitat and (uninformative) x-

coordinate predictor (Figures 7 and S8). When the driving environ-

mental predictor is known, RDA detections alone are the best

choice, as FPRs are very low and RDA detects a large number of

selected loci that are not identified by LFMM (except in the IM

demography, Figure 7a). However, when a noninformative
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environmental predictor is included, combining test results yields

greater overall benefits, as the tests show substantial commonality

in TP detections, but show very low commonality in FP detections

(Figure 7b). By retaining only overlapping loci, FPRs are

substantially reduced at some loss of power due to discarded

RDA (and LFMM in the IM demography) detections. Full GEA

results using the habitat and uninformative x-coordinate predictor

are provided in Figure S9. Note the elevated FPRs for cRDA and

GLM, and the low TPR for RF, indicating poor performance of

these methods in the presence of an uninformative/spurious

predictor.

3.5 | Correction for population structure in RDA

No MEM-based corrections for RDA were applied to IM scenarios,

due to low spatial structure (i.e., no PCoA axes were retained based

on the broken-stick criterion). The more liberal approach to correc-

tion using MEMs (removing retained MEMs significantly correlated

with environment) resulted in removal of MEMs with correlation

coefficients ranging from 0.07 to 0.72. Ancestry-based corrections

were only applied to IM scenarios with 20 individuals as six individ-

ual samples had K = 1. All approaches that correct for population

structure in RDA resulted in substantial loss of power across all
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scenarios, both in terms of empirical p-values and cut-off TPRs

(Tables 1 and S5). False-positive rates (which were already very low

for RDA) increased slightly when correcting for population structure.

There were only two scenarios where FPRs improved (one and two

fewer FP detections); however, these scenarios saw a reduction in

TPR of 81% and 92%, respectively (Table S5).

3.6 | Empirical data set

There were four significant RDA axes in the ordination of the wolf

data set (Figure 9), which returned 556 unique candidate loci that

loaded �3 SD from the mean loading on each axis: 171 SNPs

detected on RDA axis 1, 222 on RDA axis 2 and 163 on RDA axis 3

(Figure 10). Detections on axis 4 were all redundant with loci already

identified on axes 1–3. Note that additional candidates could be

identified using a less stringent cut-off, for example, �2.5 SD; we

emphasize that the choice of cut-off is dependent upon the study

questions and the tolerance for false-positive and false-negative

detections. The majority of detected SNPs were most strongly corre-

lated with precipitation covariates: 231 SNPs correlated with annual

precipitation (AP) and 144 SNPs correlated with precipitation sea-

sonality (cvP). The number of SNPs correlated with the remaining

predictors were as follows: 72 with mean diurnal temperature range

(MDR); 79 with annual mean temperature (AMT); 13 with NDVI; 12

with elevation; four with temperature seasonality (sdT); and one with

per cent tree cover (Tree).

4 | DISCUSSION

Multivariate genotype–environment association (GEA) methods have

been noted for their ability to detect multilocus selection (Hoban
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et al., 2016; Rellstab et al., 2015), although there has been no con-

trolled assessment of the effectiveness of these methods in detect-

ing multilocus selection to date. As these approaches are

increasingly being used in empirical analyses (e.g., Bourret et al.,

2014; Brauer et al., 2016; Brieuc et al., 2015; Hecht, Matala, Hess,

& Narum, 2015; Laporte et al., 2016; Pavey et al., 2015), it is impor-

tant that these claims are evaluated to ensure that the most effec-

tive GEA methods are being used, and that their results are being

appropriately interpreted.

Here, we compare a suite of methods for detecting selection in

a simulation framework to assess their ability to correctly detect

multilocus selection under different demographic and sampling sce-

narios. We found that constrained ordinations had the best overall

performance across the demographies, sampling designs, sample

sizes and selection levels tested here. The univariate LFMM

method also performed well, although power was scenario-depen-

dent and was reduced (relative to ordinations) for loci under weak

selection (in agreement with findings by de Villemereuil et al.,

2014). Random Forest, by contrast, had lower detection rates over-

all. In the following sections, we discuss the performance of these

methods and provide suggestions for their use on empirical data

sets.
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4.1 | Random Forest

Random Forest performed relatively poorly as a GEA (Figures 1, S2

and S3, Table S2). This poor performance is caused by the sparsity

of the genotype matrix (i.e., most SNPs are not under selection),

which results in detection that is dominated by strongly selected loci

(i.e., loci with strong marginal effects). This issue has been docu-

mented in other simulation and empirical studies (Goldstein et al.,

2010; Winham et al., 2012; Wright, Ziegler, & K€onig, 2016) and indi-

cates that RF is not suited to identifying weak multilocus selection or

interaction effects in these large data sets. Empirical studies that have

used RF as a GEA have likely identified a subset of loci under strong

selection, but are unlikely to have identified loci underlying more

complex genetic architectures. Note that the amount of environmen-

tal variance explained by the RF model can be high (i.e., overall per

cent variance explained by the detected SNPs, which ranged from

79% to 91% for these simulations, Table S6), while still failing to iden-

tify most of the loci under selection. Removing strong associations

from the genotypic matrix can potentially help with the detection of
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F IGURE 7 Average counts of
true-positive (top rows of a and b, in blue)
and false-positive (bottom rows of a and b,
in red) detections for two methods, RDA
and LFMM, using their best cut-offs and a
sample size of 20 individuals per deme.
The first column shows the average
number of loci detected by both methods.
The second and third columns show the
average number of detections that are
unique to RDA and LFMM, respectively. (a)
Results for GEAs using habitat as the only
predictor. (b) Results for GEAs using
habitat and the (uninformative) x-
coordinate predictor. Results are presented
for different sampling strategies
(R = random, P = pairs, T = transects),
demographies (1R and 2R = refugial
expansion, IBD = equilibrium isolation by
distance, IM = equilibrium island model)
and sample sizes (rows)
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weaker effects (Goldstein et al., 2010), but this approach has not

been tested on large matrices. Combined with the computational bur-

den of this method (taking ~10 days on a single core for the larger

data sets), as well as the availability of fast and accurate alternatives

such as RDA (which takes ~3 min on the same data), it is clear that

RF is not a viable option for GEA analysis of genomic data.

Random Forest does hold promise for the detection of interac-

tion effects in much smaller data sets (e.g., tens of loci, Holliday

et al., 2012). However, this is an area of active research, and the

capacity of RF models in their current form to both capture and

identify SNP interactions has been disputed (Winham et al., 2012;

Wright et al., 2016). New modifications of RF models are being

developed to more effectively identify interaction effects (e.g., Li,

Malley, Andrew, Karagas, & Moore, 2016), but these models are

computationally demanding and are not designed for large data sets.

Overall, extensions of RF show potential for identifying more com-

plex genetic architectures on small sets of loci, but caution is war-

ranted in using them on empirical data prior to rigorous testing on

realistic simulation scenarios.

4.2 | Constrained ordinations

The three constrained ordination methods all performed well. RDA

in particular had the highest overall power across all methods tested

here (Figures 1–3). Ordinations were relatively insensitive to sample

size (6 vs. 20 individuals sampled per deme), with the exception of

the IM demography, where larger sample sizes consistently improved

TPRs, as previously noted by De Mita et al. (2013) and Lotterhos

and Whitlock (2015) for univariate GEAs. Power was lowest in the

IM demography, which is typified by a lack of spatial autocorrelation

in allele frequencies and a reduced signal of local adaptation

(Table S7), making detection more difficult. This corresponds with

univariate GEA results from Lotterhos and Whitlock (2015), who

found very low detection rates for loci under weak selection in the

IM demography. Power was highest for IBD, followed by the 2R and

1R demographies. Data from natural systems likely lie somewhere

among these demographic extremes, and successful differentiation in

the presence of IBD and nonequilibrium conditions indicates that

ordinations should work well across a range of natural systems.

All three ordination methods were relatively insensitive to sam-

pling design, with transects performing slightly better in 1R and ran-

dom sampling performing worst in IM (Figures 4, 6, and S2).

Otherwise, results were consistent across designs, in contrast to the

univariate GEAs tested by Lotterhos and Whitlock (2015), most of

which had higher power with the paired sampling strategy. Ordina-

tions are likely less sensitive to sampling design as they take advan-

tage of covarying signals of selection across loci, making them more

robust to sampling that does not maximize environmental differenti-

ation (e.g., random or transect designs). All methods performed simi-

larly in terms of detection rates across selection strengths (Figures 4

and S2). As expected, weak selection was more difficult to detect

than moderate or strong selection, except for IBD, where detection

levels were high regardless of selection.

High TPRs were maintained when using cut-offs for all three

ordination methods (Figure 6). False-positives were universally low

for RDA and dbRDA. By contrast, cRDA showed high FPRs for all

demographies except IM, tempering its slightly higher TPRs. These

higher FPRs are a consequence of using component axes as predic-

tors. Across all scenarios and sample sizes, cRDA detected compo-

nent 1, 2 or both as significantly associated with the constrained

RDA axes (Table S8). Most selected loci load on these components

(keeping TPRs high), but neutral markers also load on these axes,

especially in cases where there are strong trends in neutral loci (i.e.,

maximum trends in neutral markers reflect FPRs for cRDA, Table S7,

TABLE 1 Average change in power (from empirical p-values) and
true- and false-positive rates (from cut-offs) for RDA using three
different approaches for partialling out population structure

Indiv./
deme

Ancestry
MEMs uncorr.
habitat

All retained
MEMs

Demography Change in power (empirical p-values)

6 1R �.53 �.59 �.72

2R �.81 �.53 �.84

IBD �.94 �.75 �.96

IM — — —

20 1R �.26 �.14 �.58

2R �.64 �.12 �.70

IBD �.93 �.69 �.93

IM �.70 — —

Mean �.69 �.47 �.79

Change in TPR (cut-offs)

6 1R �0.39 �0.43 �0.69

2R �0.70 �0.40 �0.76

IBD �0.93 �0.69 �0.94

IM — — —

20 1R �0.16 �0.16 �0.47

2R �0.47 �0.17 �0.51

IBD �0.92 �0.60 �0.90

IM �0.71 — —

Mean �0.61 �0.41 �0.71

Change in FPR (cut-offs)

6 1R 0.0011 0.0013 0.0020

2R 0.0021 0.0011 0.0021

IBD 0.0025 0.0017 0.0023

IM — — —

20 1R 0.0005 0.0003 0.0014

2R 0.0014 0.0003 0.0015

IBD 0.0021 0.0010 0.0021

IM 0.0023 — —

Mean 0.0017 0.0009 0.0019

All approaches led to an overall loss of power and an increase in

false�positive rates. There are no MEM corrections for the IM demogra-

phy, which has no significant spatial structure. Ancestry corrections apply

only to 20 individual IM runs, where K 6¼ 1.
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Figure 6). Given these results, we hypothesized that it might be chal-

lenging for cRDA to detect weak selection in the absence of a

covarying signal from loci with stronger selection coefficients. If the

selection signature is weak, it may load on a lower-level component

axis (i.e., an axis that explains less of the genetic variance), or it may

load on higher-level axes, but fail to be significantly associated with

the constrained axes. Note that although cRDA contains a step to

reduce the number of components, parallel analysis resulted in

retention of all axes in every simulation tested here (Table S8). This

meant that cRDA could search for the signal of selection across all

possible components.

When tested on simulations with loci under weak selection only,

RDA, which uses the genotype matrix directly, maintained similar

power as in the full data set (except in the IM scenario, where

power was higher when all selected loci were included), indicating

that selection signals can be detected with this method in the

absence of loci under strong selection (Figure 5, top row). By con-

trast, cRDA detection was more variable, ranging from comparable

detection rates with the full data set, to no/poor detections under

certain demographies and sample sizes. In these latter cases, poor

performance is reflected in the component axes detected as signifi-

cant (Table S8); instead of identifying the signal in the first few axes,

a variable set of lower-variance axes are detected (or none are

detected at all). This indicates that the method is not able to identify

the selected signal in the component axes in cases where that signal

is not driven by strong selection. This result, in addition to higher

FPRs for cRDA, builds a case for using the genotype matrix directly

with a constrained ordination such as RDA or dbRDA, as opposed to

a preliminary step of data conversion with PCA.

4.3 | Should results from different tests be
combined?

A common approach in local adaptation studies is to run multiple

tests (GEA only, or a combination of GEA and differentiation meth-

ods) and look for overlapping detections across methods. This ad

hoc approach is thought to increase confidence in TPRs, while mini-

mizing FPRs. The problem with this approach is that it can bias

detection towards strong selective sweeps to the exclusion of other

adaptive mechanisms which may be equally important in shaping

phenotypic variation (Franc�ois et al., 2016; Le Corre & Kremer,

2012). If the goal is to detect other forms of selection such as recent

selection or selection on standing genetic variation, this approach

will not be effective as most methods are unlikely to detect these

weak signals. Additionally, this approach limits detections to those of

the least powerful method used, forcing overall detection rates to be

a function of the weakest method implemented.

The complexities of this issue are illustrated by comparing results

across two sets of RDA and LFMM results: one where the driving

environmental variable is known (Figure 7a), and another where the

environmental predictors represent hypotheses about the most

important factors driving selection (Figure 7b). In both cases, agree-

ment on TPs is high, and RDA has a number of true-positive

detections that are unique to that method, while unique detections

by LFMM are largely limited to the IM demography. The differences

in the cases lie in FP detections: when selection is well understood,

and uninformative predictors are not used, retaining RDA detections

only is the approach that will maximize TPRs (and detection of

weakly selected loci) while maintaining minimal to zero FPRs

(Figure 7a). Where GEA analyses are more exploratory (i.e., when

selective gradients are unknown), combining detections can help

reduce FPRs (Figure 7b). If some FP detections are acceptable, keep-

ing only RDA detections will improve TPRs at the cost of increased

FPRs. A third approach, keeping all detections across both methods,

would yield little improvement in TPRs in both cases, as LFMM has

few unique TP detections. Finally, Capblancq, Luu, Blum, and Bazin

(2018) have recently suggested a promising FDR-based approach to

ordination cut-offs. This postprocessing method could allow for com-

bining significance values across tests (Franc�ois et al., 2016),

although additional testing will be needed to assess power and FPRs

of this approach.

The decision of whether and how to combine results from differ-

ent tests will be specific to the study questions, the tolerance for

false-negative and false-positive detections, and the capacity for fol-

low-up analyses on detected markers. For example, if the goal is to

detect loci with strong effects while keeping false-positive rates as

low as possible, or GEA is being used as an exploratory analysis, run-

ning multiple GEA methods and considering only overlapping detec-

tions could be a suitable strategy. However, if the goal is to detect

selection on standing genetic variation or a recent selection event,

and the most important selective agents (or close correlates of them)

are known, combining detections from multiple tests would likely be

too conservative. In this case, the best approach would be to use a

single GEA method, such as RDA, that can effectively detect covary-

ing signals arising from multilocus selection, while being robust to

selection strength, sampling design and sample size.

4.4 | Correction for population structure

All three methods used to correct for populations structure in RDA

resulted in substantial loss of power and, in most cases, slightly

increased FPRs (Tables 1 and S5). The effect of correcting for popu-

lation structure can be seen in ordination biplots from an example

simulation scenario (Figure 8). In this 1R demographic scenario, the

selection surface (“Hab”) and the refugial expansion gradient coin-

cide, so correction for population structure will also reduce the signal

of selection. The correction is most conservative when using all sig-

nificant MEM predictors to account for spatial structure (Figure 8d),

and is less conservative when using only MEMs not significantly cor-

related with environment (Figure 8c), or ancestry coefficients (Fig-

ure 8b). In all cases, however, the loss of the selection signal is

significant (Table 1) and is visible in the increasing overlap of

selected loci with neutral loci in the ordination space.

While the simulations used here have overall low global Fst (av-

erage FST = 0.05), population structure is significant enough in many

scenarios to result in slightly elevated FPRs for GLMs (univariate
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linear models which do not correct for population structure, Fig-

ure 6). Despite this, RDA and dbRDA (the multivariate analogue of

GLMs) do not show elevated FPRs, even when selection covaries

with a range expansion front, as in the 1R and 2R demographies.

This is likely because only loci with extreme loadings are identified

as potentially under selection, leaving most neutral loci, which share

a similar, but weaker, spatial signature, loading less than �3 SD from

the mean. The generality of these results needs to be tested in a

comprehensive manner using an expanded simulation parameter

space that includes stronger population structure and metapopula-

tion dynamics; this work is currently in progress. In the meantime,

we recommend that RDA be used conservatively in empirical sys-

tems with higher population structure than is tested here, for exam-

ple, by finding overlap between detections identified by RDA and

LFMM (or another GEA that accounts for population structure).

4.5 | Empirical example

Triplots of three of the four significant RDA axes for the wolf data

show SNPs (dark grey points), individuals (coloured circles) and envi-

ronmental variables (blue arrows, Figure 9). The relative arrangement

of these items in the ordination space reflects their relationship with

the ordination axes, which are linear combinations of the predictor

variables. For example, individuals from wet and temperate British

Columbia are positively related to high annual precipitation (AP) and

low temperature seasonality (sdT, Figure 9a). By contrast, Arctic and

High Arctic individuals are characterized by small mean diurnal tem-

perature range (MDR), low annual mean temperature (AMT), lower

levels of tree cover (Tree) and NDVI (a measure of vegetation green-

ness), and are found at lower elevation (Figure 9a). Atlantic Forest

and Western Forest individuals load more strongly on RDA axis 3,

showing weak and strong precipitation seasonality (cvP), respectively

(Figure 9b), consistent with continental-scale climate in these

regions.

If we zoom into the SNPs, we can visualize how candidate mar-

kers load on the RDA axes (Figure 10). For example, SNPs most

strongly correlated with AP have strong loadings in the lower left

quadrant between RDA axes 1 and 2 along the AP vector, account-

ing for the majority of these 231 AP-correlated detections (Fig-

ure 10a). Most candidates highly correlated with AMT and MDR

load strongly on axes 1 and 2, respectively. Note how candidate

SNPs correlated with precipitation seasonality (cvP) and elevation

are located in the centre of the plot, and will not be detected as

outliers on axes 1 or 2 (Figure 10a). However, these loci are

detected as outliers on axis 3 (Figure 10b). Overall, candidate SNPs

on axis 1 represent multilocus haplotypes associated with annual

precipitation and mean diurnal range; SNPs on axis 2 represent

haplotypes associated with annual precipitation and annual mean

temperature; and SNPs on axis 3 represent haplotypes associated

with precipitation seasonality.

(a) Unconditioned RDA

(c) Partial RDA: MEMs uncorrelated with Habitat (d) Partial RDA: All retained MEMs

(b) Partial RDA: Ancestry 

Neutral loci

Weak selection Moderate selection Strong selection

Predictor variable

F IGURE 8 Redundancy analysis biplots
for simulation 1R, paired sampling,
environmental surface 453 and six
individuals per deme. Distribution of loci
using: (a) unconditioned RDA (no
correction for population structure); (b)
partial RDA using ancestry values; (c)
partial RDA using retained MEMs that are
not significantly correlated with habitat; (d)
partial RDA using all retained MEMs
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Of the 1,661 candidate SNPs identified by Schweizer et al.

(2016) using Bayenv (Bayes Factor >3), only 52 were found in

common with the 556 candidates from RDA. Of these 52 com-

mon detections, only nine were identified based on the same

environmental predictor. If we include Bayenv detections using

highly correlated predictors (removed for RDA), we find nine

more candidates identified in common. Additionally, only 18% of

the Bayenv identifications were most strongly related to

precipitation variables, which are known drivers of morphology

and population structure in grey wolves (Geffen, Anderson, &

Wayne, 2004; O’Keefe, Meachen, Fet, & Brannick, 2013; Sch-

weizer et al., 2016). By contrast, 67% of RDA detections were

most strongly associated with precipitation variables, providing

new candidate regions for understanding local adaptation of

grey wolves across their North American range. A detailed R

tutorial/vignette on the application of RDA to the wolf data set

F IGURE 10 Magnification of wolf data triplots from Figure 9 to highlight SNP loadings on (a) RDA axes 1 and 2, and (b) axes 1 and 3.
Candidate SNPs are shown as coloured points with coding by most highly correlated environmental predictor. SNPs not identified as
candidates (neutral SNPs) are shown in light grey. Blue vectors represent environmental predictors (see text for abbreviations)

F IGURE 9 Triplots of wolf data for (a) RDA axes 1 and 2, and (b) axes 1 and 3. The dark grey cloud of points at the centre of each plot
represents the SNPs, and coloured points represent individual wolves with coding by ecotype. Blue vectors represent environmental predictors
(see text for abbreviations). Triplot scaling is symmetrical (both SNP and individual scores are scaled symmetrically by the square root of the
eigenvalues)
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is available at http://popgen.nescent.org/2018-03-27_RDA_GEA.

html.

5 | CONCLUSIONS AND
RECOMMENDATIONS

We found that constrained ordinations, in particular redundancy

analysis (RDA), show a superior combination of low FPRs and high

TPRs across weak, moderate and strong multilocus selection. These

results were robust across the levels of population structure, demo-

graphic histories, sampling designs and sample sizes tested here.

Additionally, RDA outperformed an alternative ordination-based

approach, cRDA, especially (and importantly) when the multilocus

selection signature was completely derived from loci under weak

selection. It is important to note that population structure was rela-

tively low in these simulations. Results may differ for systems with

strong population structure or metapopulation dynamics, where it

can be important to correct for structure or combine detections with

another GEA that accounts for structure. Continued testing of these

promising methods is needed in simulation frameworks that include

more population structure, multiple selection surfaces and genetic

architectures that are more complex than the multilocus selection

response modelled here. However, this study indicates that con-

strained ordinations are an effective means of detecting adaptive

processes that result in weak, multilocus molecular signatures, pro-

viding a powerful tool for investigating the genetic basis of local

adaptation and informing management actions to conserve the evo-

lutionary potential of species of agricultural, forestry, fisheries and

conservation concern.
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Figure S1. The three environmental surfaces used as replicates from Lotterhos & Whitlock 

(2015). Colors represent values of the environment. 

 

 

 

 

 



 

Forester et al. (2018) Detecting multilocus adaptation 2 of 20 

 

Figure S2. Average power (from empirical p-values) for different levels of selection (rows) from 

six methods (columns) using a sample size of 6 individuals per deme. Each method shows results 

for different sampling strategies (R = random, P = pairs, T = transects) and demographies (1R 

and 2R = refugial expansion, IBD = equilibrium isolation by distance, IM = equilibrium island 

model). Only the IBD demography included very weak selection (s=0.001). 

 

  



 

Forester et al. (2018) Detecting multilocus adaptation 3 of 20 

 

Figure S3. Average power (from empirical p-values) for different levels of selection (rows) from 

six methods (columns) using a sample size of 20 individuals per deme. NOTE: this figure 

reproduces Figure 4 from the main text, but includes the addition of Random Forest results for 

comparison. Each method shows results for different sampling strategies (R = random, P = pairs, 

T = transects) and demographies (1R and 2R = refugial expansion, IBD = equilibrium isolation 

by distance, IM = equilibrium island model). Only the IBD demography included very weak 

selection (s=0.001). 
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Figure S4. Average true positive (top two rows, in blue) and false positive (bottom two rows, in 

red) rates for constrained ordinations using +/- 2.5 and 3.0 SD cutoffs. Each method and cutoff 

shows results for different sampling strategies (R = random, P = pairs, T = transects), 

demographies (1R and 2R = refugial expansion, IBD = equilibrium isolation by distance, IM = 

equilibrium island model), and sample sizes (rows). 



 

Forester et al. (2018) Detecting multilocus adaptation 5 of 20 

 
 

Figure S5. Average true positive (top two rows, in blue) and false positive (bottom two rows, in 

red) rates for cRDA using SNP-component correlation cutoffs of alpha = 0.05, 0.01, and 0.001. 

Each cutoff shows results for different sampling strategies (R = random, P = pairs, T = transects), 

demographies (1R and 2R = refugial expansion, IBD = equilibrium isolation by distance, IM = 

equilibrium island model), and sample sizes (rows).  
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Figure S6.  Average true positive (top two rows, in blue) and false positive (bottom two rows, in 

red) rates for GLM using Bonferroni-corrected cutoffs of 0.05 and 0.01, and false discovery rate 

(FDR) cutoffs of 0.01, 0.05, and 0.1. FDR results should be evaluated in the context of the 

corresponding genomic inflation factors (Table S1) to assess model calibration. Each cutoff 

shows results for different sampling strategies (R = random, P = pairs, T = transects), 

demographies (1R and 2R = refugial expansion, IBD = equilibrium isolation by distance, IM = 

equilibrium island model), and sample sizes (rows). 
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Figure S7. Average true positive (top two rows, in blue) and false positive (bottom two rows, in 

red) rates for LFMM using Bonferroni-corrected cutoffs of 0.05 and 0.01, and false discovery 

rate (FDR) cutoffs of 0.01, 0.05, and 0.1. FDR results should be evaluated in the context of the 

corresponding genomic inflation factors (Table S1) to assess model calibration. Each cutoff 

shows results for different sampling strategies (R = random, P = pairs, T = transects), 

demographies (1R and 2R = refugial expansion, IBD = equilibrium isolation by distance, IM = 

equilibrium island model), and sample sizes (rows). 
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Figure S8. Average counts of true positive (top rows of a and b, in blue) and false positive 

(bottom rows of a and b, in red) detections for two methods, RDA and LFMM, using their best 

cutoffs and a sample size of 6 individuals per deme. The first column shows the average number 

of loci detected by both methods. The second and third columns show the average number of 

detections that are unique to RDA and LFMM, respectively. (a) Results for GEAs using Habitat 

as the only predictor. (b) Results for GEAs using Habitat and the (uninformative) X-coordinate 

predictor. Results are presented for different sampling strategies (R = random, P = pairs, T = 

transects), demographies (1R and 2R = refugial expansion, IBD = equilibrium isolation by 

distance, IM = equilibrium island model), and sample sizes (rows). 
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Figure S9. Average true positive (top two rows, in blue) and false positive (bottom two rows, in 

red) rates from six methods (columns) using the habitat and uninformative x-coordinate 

predictors and the best cutoff for each method. Each method shows results for different sampling 

strategies (R = random, P = pairs, T = transects), demographies (1R and 2R = refugial expansion, 

IBD = equilibrium isolation by distance, IM = equilibrium island model), and sample sizes 

(rows). 
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Table S1: Parameters from generalized linear model (GLM) and latent factor mixed model 

(LFMM) runs: genomic inflation factors (GIF) for GLM and LFMM, and K for LFMM. 

   
6 individuals per deme 20 individuals per deme 

Demo-
graphy 

Sampling 
Design 

Envir. 
Surface 

GLM            
GIF 

LFMM      
K 

LFMM   
GIF 

GLM            
GIF 

LFMM      
K 

LFMM   
GIF 

1R R 453 2.30 5 0.51 6.55 5 1.17 

1R R 950 1.81 5 0.45 4.69 5 1.02 

1R R 988 1.64 5 0.42 4.31 5 1.19 

1R P 453 1.92 5 0.43 5.25 5 1.02 

1R P 950 2.68 5 0.63 7.80 5 1.20 

1R P 988 2.04 5 0.49 5.64 5 1.08 

1R T 453 1.36 5 0.41 3.23 5 0.98 

1R T 950 1.41 5 0.36 3.44 5 1.07 

1R T 988 1.13 5 0.33 2.53 5 0.64 

2R R 453 1.70 5 0.31 4.44 5 0.50 

2R R 950 1.46 5 0.25 3.50 5 0.65 

2R R 988 2.19 5 0.27 5.94 5 0.60 

2R P 453 1.33 5 0.27 3.39 5 0.70 

2R P 950 1.58 5 0.35 3.97 5 0.69 

2R P 988 1.99 5 0.27 5.43 5 0.79 

2R T 453 1.11 5 0.23 2.41 5 0.57 

2R T 950 1.25 5 0.26 2.84 5 0.67 

2R T 988 0.98 5 0.18 2.10 5 0.42 

IBD R 453 1.75 4 0.40 4.59 4 1.16 

IBD R 950 1.42 4 0.35 3.34 4 1.12 

IBD R 988 1.41 4 0.34 3.48 4 0.95 

IBD P 453 1.67 4 0.36 4.45 4 1.20 

IBD P 950 1.73 4 0.42 4.45 4 1.12 

IBD P 988 1.50 4 0.36 3.83 4 0.95 

IBD T 453 1.46 4 0.48 3.67 4 1.37 

IBD T 950 1.19 4 0.32 2.72 4 1.09 

IBD T 988 1.18 4 0.35 2.65 4 0.86 

IM R 453 0.72 1 1.12 1.10 4 0.22 

IM R 950 0.69 1 1.13 1.05 4 0.20 

IM R 988 0.70 1 1.13 1.10 4 0.16 

IM P 453 0.71 1 1.16 1.11 2 0.56 

IM P 950 0.70 1 1.12 1.06 2 0.53 

IM P 988 0.69 1 1.11 1.06 2 0.52 

IM T 453 0.68 1 1.09 1.06 2 0.54 

IM T 950 0.69 1 1.10 1.06 2 0.59 

IM T 988 0.69 1 1.09 1.04 2 0.62 

 

  



 

Forester et al. (2018) Detecting multilocus adaptation 11 of 20 

Table S2: RF results averaged across environments for true and false positive rates using no 

correction for population structure and two different approaches to correcting for population 

structure: using ancestry values to correct the habitat predictor only, and using ancestry values to 

correct both the genotypes and habitat predictor. 

  
True Positive Rates 

  
6 individuals per deme 20 individuals per deme 

Demo-
graphy 

Sampling 
Design 

No 
correction 

Habitat 
corrected 

Genotypes 
& Habitat 
corrected 

No 
correction 

Habitat 
corrected 

Genotypes 
& Habitat 
corrected 

1R R 0.43 0.46 0.16 0.60 0.63 0.14 

1R P 0.40 0.43 0.15 0.67 0.66 0.14 

1R T 0.41 0.44 0.15 0.64 0.68 0.15 

2R R 0.53 0.55 0.13 0.75 0.77 0.16 

2R P 0.57 0.53 0.17 0.80 0.83 0.17 

2R T 0.45 0.52 0.14 0.75 0.78 0.18 

IBD R 0.44 0.45 0.09 0.83 0.91 0.09 

IBD P 0.40 0.46 0.13 0.75 0.86 0.18 

IBD T 0.23 0.26 0.08 0.45 0.54 0.09 

IM R 0.19 0.20 0.20 0.26 0.34 0.07 

IM P 0.23 0.31 0.31 0.51 0.56 0.08 

IM T 0.28 0.26 0.26 0.49 0.52 0.06 

        

  
False Positive Rates 

  
6 individuals per deme 20 individuals per deme 

Demo-
graphy 

Sampling 
Design 

No 
correction 

Habitat 
corrected 

Genotypes 
& Habitat 
corrected 

No 
correction 

Habitat 
corrected 

Genotypes 
& Habitat 
corrected 

1R R 0.005 0.006 0.008 0.009 0.011 0.004 

1R P 0.004 0.006 0.006 0.013 0.011 0.004 

1R T 0.006 0.004 0.006 0.008 0.011 0.008 

2R R 0.005 0.004 0.006 0.008 0.008 0.009 

2R P 0.006 0.005 0.005 0.012 0.012 0.010 

2R T 0.005 0.005 0.007 0.012 0.012 0.010 

IBD R 0.004 0.004 0.006 0.010 0.013 0.014 

IBD P 0.005 0.006 0.009 0.014 0.016 0.019 

IBD T 0.006 0.004 0.007 0.008 0.008 0.016 

IM R 0.006 0.005 0.005 0.009 0.009 0.027 

IM P 0.006 0.007 0.007 0.009 0.012 0.024 

IM T 0.007 0.004 0.004 0.009 0.009 0.028 
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Table S3: LFMM results averaged across environments for power (from empirical p-values) and 

true and false positive rates (from 0.05 FDR cutoff) using K and K-1. GIF is the genomic 

inflation factor. For the 6 individual IM demography scenarios the best value of K was 1, so no 

reduction in K was tested for these cases. 

  
6 individuals per deme 

Demo-
graphy 

Sampling 
Design 

K 
GIF         
K 

GIF            
K-1 

Emp P      
K 

Emp P       
K-1 

TPR            
K 

TPR          
K-1 

FPR            
K 

FPR           
K-1 

1R R 5 0.46 0.89 0.64 0.65 0.72 0.73 0.001 0.001 

1R P 5 0.52 1.23 0.71 0.68 0.77 0.75 0.001 0.001 

1R T 5 0.36 0.68 0.71 0.70 0.78 0.79 0.001 0.001 

2R R 5 0.28 0.41 0.85 0.83 0.91 0.91 0.002 0.002 

2R P 5 0.29 0.47 0.87 0.88 0.92 0.92 0.001 0.001 

2R T 5 0.22 0.35 0.88 0.87 0.92 0.90 0.002 0.002 

IBD R 4 0.36 0.78 0.72 0.64 0.96 0.91 0.001 0.001 

IBD P 4 0.38 0.73 0.96 0.96 0.99 0.98 0.001 0.002 

IBD T 4 0.38 0.68 0.51 0.35 0.76 0.63 0.001 0.002 

           

  
20 individuals per deme 

Demo-
graphy 

Sampling 
Design 

K 
GIF         
K 

GIF            
K-1 

Emp P      
K 

Emp P       
K-1 

TPR            
K 

TPR          
K-1 

FPR            
K 

FPR           
K-1 

1R R 5 1.13 2.62 0.72 0.68 0.73 0.73 0.001 0.001 

1R P 5 1.10 4.04 0.74 0.68 0.77 0.73 0.001 0.002 

1R T 5 0.89 1.61 0.73 0.72 0.79 0.78 0.002 0.001 

2R R 5 0.59 1.14 0.68 0.68 0.85 0.88 0.001 0.002 

2R P 5 0.73 1.53 0.87 0.86 0.89 0.91 0.001 0.001 

2R T 5 0.55 0.87 0.84 0.88 0.90 0.91 0.001 0.001 

IBD R 4 1.08 1.44 0.34 0.32 0.63 0.69 0.001 0.001 

IBD P 4 1.09 1.65 0.84 0.84 0.91 0.96 0.001 0.002 

IBD T 4 1.11 1.53 0.15 0.30 0.31 0.52 0.001 0.001 

IM R 4 0.19 0.41 0.54 0.45 0.68 0.55 0.001 0.001 

IM P 2 0.54 1.70 0.75 0.80 0.88 0.94 0.001 0.002 

IM T 2 0.58 1.71 0.80 0.79 0.88 0.94 0.001 0.002 
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Table S4: LFMM results for power (from empirical p-values) and true and false positive rates 

(from 0.05 FDR cutoff) using K and K-1. GIF is the genomic inflation factor. For the 6 

individual IM demography scenarios the best value of K was 1, so no reduction in K was tested 

for these cases. 

   
6 individuals per deme 

Demo-
graphy 

Sampling 
Design 

Envir. 
Surface 

K 
GIF         
K 

GIF            
K-1 

Emp P      
K 

Emp P       
K-1 

TPR            
K 

TPR          
K-1 

FPR            
K 

FPR           
K-1 

1R R 453 5 0.51 1.06 0.66 0.67 0.78 0.80 0.001 0.002 

1R R 950 5 0.45 0.94 0.62 0.65 0.68 0.70 0.001 0.001 

1R R 988 5 0.42 0.66 0.64 0.64 0.69 0.68 0.000 0.001 

1R P 453 5 0.43 0.88 0.76 0.75 0.82 0.82 0.001 0.001 

1R P 950 5 0.63 1.71 0.71 0.70 0.76 0.74 0.001 0.001 

1R P 988 5 0.49 1.10 0.66 0.59 0.72 0.68 0.001 0.001 

1R T 453 5 0.41 0.90 0.75 0.75 0.85 0.86 0.001 0.001 

1R T 950 5 0.36 0.63 0.67 0.65 0.71 0.71 0.001 0.002 

1R T 988 5 0.33 0.52 0.70 0.69 0.78 0.78 0.001 0.001 

2R R 453 5 0.31 0.46 0.92 0.91 0.94 0.94 0.003 0.002 

2R R 950 5 0.25 0.41 0.86 0.86 0.91 0.91 0.002 0.002 

2R R 988 5 0.27 0.35 0.79 0.74 0.89 0.88 0.002 0.002 

2R P 453 5 0.27 0.45 0.87 0.88 0.93 0.92 0.001 0.002 

2R P 950 5 0.35 0.56 0.88 0.90 0.93 0.93 0.001 0.001 

2R P 988 5 0.27 0.40 0.87 0.87 0.90 0.90 0.002 0.001 

2R T 453 5 0.23 0.38 0.90 0.89 0.95 0.93 0.002 0.002 

2R T 950 5 0.26 0.40 0.87 0.88 0.90 0.90 0.002 0.002 

2R T 988 5 0.18 0.27 0.88 0.85 0.90 0.88 0.001 0.001 

IBD R 453 4 0.40 0.81 0.99 0.99 1.00 0.99 0.001 0.001 

IBD R 950 4 0.35 0.83 0.79 0.58 0.97 0.91 0.002 0.002 

IBD R 988 4 0.34 0.72 0.39 0.34 0.91 0.83 0.001 0.001 

IBD P 453 4 0.36 0.70 0.98 0.98 0.99 0.99 0.001 0.002 

IBD P 950 4 0.42 0.81 0.99 0.99 0.99 0.99 0.002 0.002 

IBD P 988 4 0.36 0.68 0.92 0.92 1.00 0.97 0.002 0.001 

IBD T 453 4 0.48 0.83 0.63 0.44 0.74 0.58 0.001 0.001 

IBD T 950 4 0.32 0.66 0.68 0.25 0.87 0.69 0.002 0.002 

IBD T 988 4 0.35 0.55 0.21 0.36 0.68 0.63 0.001 0.003 
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Table S4 (continued) 

   
20 individuals per deme 

Demo-
graphy 

Sampling 
Design 

Envir. 
Surface 

K 
GIF         
K 

GIF            
K-1 

Emp P      
K 

Emp P       
K-1 

TPR            
K 

TPR          
K-1 

FPR            
K 

FPR           
K-1 

1R R 453 5 1.17 2.85 0.77 0.73 0.79 0.78 0.001 0.002 

1R R 950 5 1.02 3.05 0.65 0.65 0.66 0.68 0.001 0.002 

1R R 988 5 1.19 1.96 0.74 0.67 0.75 0.74 0.000 0.001 

1R P 453 5 1.02 2.89 0.83 0.77 0.85 0.78 0.001 0.001 

1R P 950 5 1.20 5.53 0.70 0.67 0.71 0.69 0.002 0.002 

1R P 988 5 1.08 3.70 0.69 0.61 0.76 0.72 0.001 0.002 

1R T 453 5 0.98 2.15 0.78 0.78 0.85 0.86 0.001 0.001 

1R T 950 5 1.07 1.61 0.65 0.64 0.70 0.71 0.001 0.001 

1R T 988 5 0.64 1.08 0.76 0.73 0.82 0.78 0.003 0.001 

2R R 453 5 0.50 1.73 0.90 0.90 0.92 0.94 0.002 0.002 

2R R 950 5 0.65 0.93 0.82 0.85 0.88 0.89 0.001 0.001 

2R R 988 5 0.60 0.77 0.33 0.29 0.74 0.81 0.001 0.003 

2R P 453 5 0.70 1.29 0.88 0.87 0.89 0.92 0.001 0.001 

2R P 950 5 0.69 1.78 0.87 0.84 0.90 0.90 0.001 0.001 

2R P 988 5 0.79 1.53 0.86 0.86 0.88 0.90 0.001 0.002 

2R T 453 5 0.57 0.99 0.85 0.91 0.90 0.94 0.001 0.001 

2R T 950 5 0.67 1.11 0.87 0.87 0.89 0.88 0.001 0.001 

2R T 988 5 0.42 0.51 0.80 0.86 0.90 0.92 0.001 0.002 

IBD R 453 4 1.16 1.61 0.62 0.73 0.84 0.93 0.000 0.000 

IBD R 950 4 1.12 1.54 0.30 0.13 0.76 0.75 0.001 0.001 

IBD R 988 4 0.95 1.17 0.09 0.11 0.30 0.39 0.001 0.001 

IBD P 453 4 1.20 1.57 0.82 0.77 0.89 0.96 0.000 0.002 

IBD P 950 4 1.12 1.85 0.86 0.99 0.95 0.99 0.002 0.002 

IBD P 988 4 0.95 1.54 0.83 0.76 0.90 0.92 0.002 0.001 

IBD T 453 4 1.37 1.90 0.15 0.23 0.19 0.38 0.000 0.000 

IBD T 950 4 1.09 1.30 0.15 0.48 0.42 0.65 0.001 0.002 

IBD T 988 4 0.86 1.39 0.16 0.18 0.33 0.53 0.002 0.001 

IM R 453 4 0.22 0.50 0.61 0.41 0.68 0.48 0.001 0.000 

IM R 950 4 0.20 0.40 0.45 0.51 0.61 0.57 0.000 0.001 

IM R 988 4 0.16 0.34 0.57 0.42 0.74 0.60 0.003 0.001 

IM P 453 2 0.56 1.71 0.80 0.86 0.88 0.95 0.001 0.002 

IM P 950 2 0.53 1.72 0.87 0.86 0.88 0.95 0.000 0.001 

IM P 988 2 0.52 1.68 0.58 0.67 0.87 0.92 0.003 0.002 

IM T 453 2 0.54 1.69 0.83 0.92 0.91 0.98 0.001 0.001 

IM T 950 2 0.59 1.73 0.76 0.76 0.84 0.91 0.002 0.002 

IM T 988 2 0.62 1.70 0.82 0.69 0.89 0.93 0.001 0.002 
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Table S5: Change in power (from empirical p-values) and true and false positive rates (from 

cutoffs) for RDA using three different approaches for partialling out population structure. There 

are no MEM corrections for the IM demography, which has no significant spatial structure. 

Ancestry corrections apply only to 20 individual runs, where K ≠ 1. 

   Change in power (empirical p-values) 

   6 individuals per deme 20 individuals per deme 

Demo-
graphy 

Sampling 
Design 

Envir. 
Surface 

Ancestry 
MEMs 
uncorr. 

Hab. 

All 
retained 
MEMs 

Ancestry 
MEMs 
uncorr. 

Hab. 

All 
retained 
MEMs 

1R R 453 -0.63 -0.73 -0.78 -0.33 -0.28 -0.63 

1R R 950 -0.49 -0.53 -0.70 -0.46 -0.12 -0.57 

1R R 988 -0.59 -0.74 -0.68 -0.38 NA -0.67 

1R P 453 -0.51 -0.63 -0.62 -0.17 -0.01 -0.38 

1R P 950 -0.61 -0.47 -0.73 -0.38 -0.16 -0.38 

1R P 988 -0.56 -0.57 -0.58 -0.13 -0.22 -0.42 

1R T 453 -0.51 -0.58 -0.92 -0.08 -0.05 -0.89 

1R T 950 -0.42 -0.47 -0.73 -0.25 -0.11 -0.57 

1R T 988 -0.44 -0.55 -0.71 -0.14 -0.19 -0.70 

2R R 453 -0.82 -0.92 -0.95 -0.52 -0.48 -0.89 

2R R 950 -0.78 -0.66 -0.91 -0.60 -0.09 -0.72 

2R R 988 -0.81 -0.81 -0.77 -0.78 NA -0.78 

2R P 453 -0.88 -0.60 -0.80 -0.77 -0.06 -0.45 

2R P 950 -0.93 -0.33 -0.92 -0.70 -0.04 -0.75 

2R P 988 -0.79 -0.29 -0.77 -0.73 -0.15 -0.50 

2R T 453 -0.78 -0.28 -0.94 -0.44 -0.05 -0.91 

2R T 950 -0.77 -0.58 -0.80 -0.62 -0.06 -0.75 

2R T 988 -0.74 -0.29 -0.72 -0.56 -0.05 -0.57 

IBD R 453 -1.00 -1.00 -1.00 -0.95 -0.93 -1.00 

IBD R 950 -0.92 -0.92 -0.99 -0.92 -0.83 -0.95 

IBD R 988 -0.93 -0.93 -0.99 -0.93 NA -0.93 

IBD P 453 -0.93 -0.92 -0.93 -0.93 -0.34 -0.87 

IBD P 950 -0.98 -0.17 -0.98 -0.92 -0.49 -0.90 

IBD P 988 -0.93 -0.18 -0.93 -0.93 -0.54 -0.93 

IBD T 453 -0.93 -0.84 -0.93 -0.93 -0.69 -0.93 

IBD T 950 -0.93 -0.92 -0.99 -0.93 -0.75 -0.93 

IBD T 988 -0.93 -0.91 -0.93 -0.93 -0.91 -0.92 

IM R 453 - - - -0.55 - - 

IM R 950 - - - -0.56 - - 

IM R 988 - - - -0.59 - - 

IM P 453 - - - -0.76 - - 

IM P 950 - - - -0.81 - - 

IM P 988 - - - -0.66 - - 

IM T 453 - - - -0.93 - - 

IM T 950 - - - -0.79 - - 

IM T 988 - - - -0.69 - - 
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Table S5 (continued) 

   Change in TPR (cutoffs) 

   6 individuals per deme 20 individuals per deme 

Demo-
graphy 

Sampling 
Design 

Envir. 
Surface 

Ancestry 
MEMs 
uncorr. 

Hab. 

All 
retained 
MEMs 

Ancestry 
MEMs 
uncorr. 

Hab. 

All 
retained 
MEMs 

1R R 453 -0.53 -0.60 -0.75 -0.21 -0.22 -0.46 

1R R 950 -0.48 -0.32 -0.70 -0.31 -0.04 -0.43 

1R R 988 -0.39 -0.62 -0.67 -0.15 -0.81 -0.57 

1R P 453 -0.35 -0.54 -0.63 -0.09 -0.02 -0.30 

1R P 950 -0.52 -0.28 -0.58 -0.24 -0.08 -0.28 

1R P 988 -0.41 -0.48 -0.62 -0.15 -0.09 -0.28 

1R T 453 -0.29 -0.44 -0.91 -0.07 -0.05 -0.76 

1R T 950 -0.37 -0.32 -0.65 -0.19 -0.07 -0.45 

1R T 988 -0.18 -0.24 -0.70 -0.03 -0.05 -0.68 

2R R 453 -0.72 -0.82 -0.95 -0.41 -0.26 -0.80 

2R R 950 -0.62 -0.48 -0.89 -0.24 -0.03 -0.49 

2R R 988 -0.79 -0.78 -0.77 -0.79 -0.92 -0.59 

2R P 453 -0.75 -0.48 -0.69 -0.56 -0.02 -0.28 

2R P 950 -0.73 -0.22 -0.77 -0.34 -0.03 -0.34 

2R P 988 -0.72 -0.14 -0.63 -0.57 -0.13 -0.31 

2R T 453 -0.68 -0.09 -0.84 -0.32 -0.05 -0.79 

2R T 950 -0.67 -0.35 -0.69 -0.58 -0.04 -0.54 

2R T 988 -0.64 -0.25 -0.61 -0.38 -0.05 -0.48 

IBD R 453 -0.97 -0.93 -0.99 -0.93 -0.92 -0.96 

IBD R 950 -0.92 -0.91 -0.95 -0.92 -0.58 -0.92 

IBD R 988 -0.93 -0.93 -0.93 -0.93 -1.00 -0.93 

IBD P 453 -0.93 -0.91 -0.91 -0.93 -0.29 -0.76 

IBD P 950 -0.92 -0.10 -0.92 -0.87 -0.40 -0.87 

IBD P 988 -0.93 -0.12 -0.93 -0.93 -0.36 -0.93 

IBD T 453 -0.93 -0.63 -0.93 -0.93 -0.54 -0.90 

IBD T 950 -0.93 -0.87 -0.93 -0.92 -0.57 -0.89 

IBD T 988 -0.93 -0.79 -0.93 -0.93 -0.78 -0.91 

IM R 453 - - - -0.60 - - 

IM R 950 - - - -0.52 - - 

IM R 988 - - - -0.61 - - 

IM P 453 - - - -0.77 - - 

IM P 950 - - - -0.78 - - 

IM P 988 - - - -0.78 - - 

IM T 453 - - - -0.80 - - 

IM T 950 - - - -0.77 - - 

IM T 988 - - - -0.79 - - 
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Table S5 (continued) 

   Change in FPR (cutoffs) 

   6 individuals per deme 20 individuals per deme 

Demo-
graphy 

Sampling 
Design 

Envir. 
Surface 

Ancestry 
MEMs 
uncorr. 

Hab. 

All 
retained 
MEMs 

Ancestry 
MEMs 
uncorr. 

Hab. 

All 
retained 
MEMs 

1R R 453 0.0016 0.0018 0.0016 0.0012 0.0007 0.0018 

1R R 950 0.0017 0.0011 0.0016 0.0002 0.0000 0.0013 

1R R 988 0.0014 0.0013 0.0026 0.0009 -0.0001 0.0015 

1R P 453 0.0008 0.0018 0.0014 0.0009 0.0000 0.0008 

1R P 950 0.0013 0.0017 0.0026 0.0005 0.0006 0.0015 

1R P 988 0.0008 0.0011 0.0020 0.0000 0.0007 0.0010 

1R T 453 0.0005 0.0016 0.0029 0.0001 0.0000 0.0017 

1R T 950 0.0008 0.0009 0.0018 0.0004 0.0004 0.0013 

1R T 988 0.0008 0.0005 0.0017 0.0005 0.0004 0.0015 

2R R 453 0.0017 0.0016 0.0027 0.0012 0.0007 0.0017 

2R R 950 0.0019 0.0015 0.0022 0.0012 0.0004 0.0017 

2R R 988 0.0026 0.0012 0.0020 0.0021 -0.0002 0.0011 

2R P 453 0.0017 0.0013 0.0019 0.0016 0.0003 0.0010 

2R P 950 0.0027 0.0011 0.0021 0.0016 0.0003 0.0019 

2R P 988 0.0021 0.0004 0.0018 0.0013 0.0003 0.0011 

2R T 453 0.0014 0.0008 0.0017 0.0007 0.0000 0.0024 

2R T 950 0.0024 0.0005 0.0028 0.0018 0.0003 0.0016 

2R T 988 0.0019 0.0011 0.0017 0.0010 0.0002 0.0011 

IBD R 453 0.0024 0.0022 0.0025 0.0023 0.0017 0.0026 

IBD R 950 0.0025 0.0019 0.0022 0.0020 0.0008 0.0020 

IBD R 988 0.0031 0.0030 0.0029 0.0025 0.0000 0.0027 

IBD P 453 0.0024 0.0021 0.0019 0.0027 0.0003 0.0016 

IBD P 950 0.0020 0.0003 0.0029 0.0022 0.0009 0.0021 

IBD P 988 0.0028 0.0004 0.0033 0.0027 0.0014 0.0023 

IBD T 453 0.0024 0.0013 0.0012 0.0018 0.0010 0.0028 

IBD T 950 0.0024 0.0021 0.0025 0.0016 0.0015 0.0012 

IBD T 988 0.0019 0.0019 0.0014 0.0012 0.0013 0.0012 

IM R 453 - - - 0.0021 - - 

IM R 950 - - - 0.0020 - - 

IM R 988 - - - 0.0022 - - 

IM P 453 - - - 0.0021 - - 

IM P 950 - - - 0.0021 - - 

IM P 988 - - - 0.0016 - - 

IM T 453 - - - 0.0028 - - 

IM T 950 - - - 0.0029 - - 

IM T 988 - - - 0.0026 - - 
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Table S6: Percent variance explained for Random Forest models. 

 

Demography Design Env PVE: 6 ind./deme PVE: 20 ind./deme 

1R R 453 0.86 0.85 

1R R 950 0.81 0.80 

1R R 988 0.81 0.79 

1R P 453 0.88 0.87 

1R P 950 0.90 0.88 

1R P 988 0.88 0.88 

1R T 453 0.83 0.82 

1R T 950 0.87 0.86 

1R T 988 0.82 0.80 

2R R 453 0.85 0.84 

2R R 950 0.80 0.80 

2R R 988 0.81 0.79 

2R P 453 0.87 0.86 

2R P 950 0.90 0.88 

2R P 988 0.89 0.88 

2R T 453 0.83 0.82 

2R T 950 0.86 0.86 

2R T 988 0.82 0.80 

IBD R 453 0.85 0.84 

IBD R 950 0.81 0.79 

IBD R 988 0.81 0.79 

IBD P 453 0.88 0.86 

IBD P 950 0.89 0.88 

IBD P 988 0.89 0.88 

IBD T 453 0.85 0.83 

IBD T 950 0.84 0.84 

IBD T 988 0.82 0.80 

IM R 453 0.83 0.82 

IM R 950 0.85 0.83 

IM R 988 0.81 0.80 

IM P 453 0.88 0.87 

IM P 950 0.91 0.89 

IM P 988 0.88 0.88 

IM T 453 0.86 0.85 

IM T 950 0.88 0.86 

IM T 988 0.85 0.85 
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Table S7: Correlations between habitat and x- and y-coordinates of demes; average and 

maximum trend in neutral markers; average and maximum levels of local adaptation. 

   Correlations: 
Neutral trend:      
6 indiv./deme 

Neutral trend:    
20 indiv./deme 

Local adaptation:        
6 indiv./deme 

Local adaptation:       
20 indiv./deme 

Demo-
graphy 

De-
sign 

Env 
Hab. 
and X 

Hab. 
and Y 

Avg. Max. Avg. Max. Avg Max. Avg. Max. 

1R R 453 0.00 0.65 0.11 0.61 0.20 0.79 0.49 0.76 0.55 0.80 

1R R 950 0.05 0.63 0.11 0.63 0.20 0.80 0.37 0.68 0.42 0.70 

1R R 988 0.03 0.55 0.11 0.64 0.20 0.80 0.36 0.65 0.42 0.67 

1R P 453 0.00 0.84 0.12 0.64 0.21 0.80 0.52 0.80 0.57 0.80 

1R P 950 0.00 0.69 0.13 0.68 0.22 0.83 0.52 0.83 0.56 0.83 

1R P 988 -0.11 0.70 0.12 0.62 0.21 0.82 0.44 0.83 0.50 0.84 

1R T 453 0.13 0.82 0.13 0.67 0.23 0.84 0.42 0.70 0.46 0.71 

1R T 950 0.12 0.83 0.12 0.68 0.22 0.84 0.38 0.73 0.42 0.76 

1R T 988 -0.14 0.78 0.12 0.60 0.21 0.80 0.36 0.70 0.41 0.73 

2R R 453 0.00 0.65 0.14 0.71 0.25 0.83 0.55 0.74 0.62 0.75 

2R R 950 0.05 0.63 0.13 0.70 0.24 0.83 0.45 0.67 0.51 0.68 

2R R 988 0.03 0.55 0.14 0.69 0.25 0.83 0.42 0.68 0.49 0.70 

2R P 453 0.00 0.84 0.14 0.70 0.25 0.85 0.58 0.80 0.64 0.81 

2R P 950 0.00 0.69 0.14 0.76 0.26 0.85 0.61 0.83 0.66 0.84 

2R P 988 -0.11 0.70 0.15 0.73 0.26 0.84 0.54 0.83 0.61 0.84 

2R T 453 0.13 0.82 0.15 0.80 0.27 0.91 0.49 0.71 0.55 0.73 

2R T 950 0.12 0.83 0.14 0.70 0.26 0.87 0.45 0.74 0.51 0.76 

2R T 988 -0.14 0.78 0.14 0.70 0.26 0.82 0.41 0.71 0.48 0.71 

IBD R 453 0.00 0.65 0.06 0.42 0.11 0.58 0.61 0.72 0.65 0.74 

IBD R 950 0.05 0.63 0.06 0.43 0.10 0.59 0.48 0.68 0.52 0.69 

IBD R 988 0.03 0.55 0.06 0.41 0.10 0.56 0.44 0.68 0.48 0.69 

IBD P 453 0.00 0.84 0.06 0.43 0.11 0.56 0.63 0.81 0.68 0.82 

IBD P 950 0.00 0.69 0.07 0.44 0.11 0.63 0.68 0.83 0.72 0.83 

IBD P 988 -0.11 0.70 0.06 0.41 0.10 0.57 0.60 0.83 0.64 0.84 

IBD T 453 0.13 0.82 0.07 0.47 0.12 0.63 0.43 0.71 0.46 0.71 

IBD T 950 0.12 0.83 0.06 0.56 0.10 0.69 0.42 0.71 0.46 0.72 

IBD T 988 -0.14 0.78 0.07 0.41 0.11 0.58 0.35 0.69 0.37 0.69 

IM R 453 0.00 0.65 0.02 0.25 0.02 0.22 0.17 0.74 0.26 0.79 

IM R 950 0.05 0.63 0.02 0.18 0.02 0.20 0.16 0.76 0.24 0.82 

IM R 988 0.03 0.55 0.02 0.25 0.02 0.28 0.18 0.72 0.26 0.77 

IM P 453 0.00 0.84 0.02 0.17 0.02 0.18 0.26 0.82 0.38 0.87 

IM P 950 0.00 0.69 0.02 0.20 0.02 0.22 0.27 0.85 0.40 0.87 

IM P 988 -0.11 0.70 0.02 0.20 0.02 0.20 0.26 0.82 0.39 0.86 

IM T 453 0.13 0.82 0.02 0.21 0.02 0.18 0.25 0.76 0.38 0.81 

IM T 950 0.12 0.83 0.02 0.19 0.02 0.21 0.24 0.82 0.36 0.84 

IM T 988 -0.14 0.78 0.02 0.27 0.02 0.22 0.25 0.80 0.37 0.83 
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Table S8: Parameters from cRDA runs: number of axes retained by the parallel analysis 

criterion, and component axes significantly correlated with the constrained ordination axis. 

Results shown for all selection strengths and simulation data with weak selection only.  

   All selection strengths Weak selection only 
   6 ind. 20ind 6 ind. 20ind 

Demo-
graphy 

De-
sign 

Env 
Ret. 
axes 

Signif. 
Comp. 

Ret. 
axes 

Signif. 
Comp. 

Ret. 
axes 

Signif. 
Comp. 

Ret. 
axes 

Signif. Comp. 

1R R 453 540 2 1800 2 540 3 0 0 

1R R 950 540 2 1800 2 540 2 1800 0 

1R R 988 540 2 1800 2 540 2 1800 9 

1R P 453 540 2 1800 2 540 2 0 0 

1R P 950 540 2 1800 2 540 2 1800 2 

1R P 988 540 2 1800 2 540 2 1800 8, 11, 1300 

1R T 453 540 2 1800 2 540 3 1800 7, 995, 1421 

1R T 950 540 2 1800 2 540 3 1800 1277 

1R T 988 540 2 1800 2 540 2 1800 7, 9 

2R R 453 540 2 1800 2 540 2 1800 1, 2 

2R R 950 540 2 1800 2 540 1, 2 1800 1, 2 

2R R 988 540 1, 2 1800 1, 2 540 1, 2 1800 1, 1348 

2R P 453 540 2 1800 2 540 2 1800 2 

2R P 950 540 2 1800 2 540 2 1800 2 

2R P 988 540 2 1800 2 540 1, 2 1800 1, 2 

2R T 453 540 2 1800 2 540 2 1800 2 

2R T 950 540 2 1800 2 540 2 1800 1, 2 

2R T 988 540 2 1800 2 540 2 1800 2 

IBD R 453 540 1 1800 1 540 1 1800 1 

IBD R 950 540 1 1800 1 540 1 1800 1 

IBD R 988 540 1 1800 1 540 1 1800 1 

IBD P 453 540 1 1800 1 540 1 1800 1 

IBD P 950 540 1 1800 1 540 1 1800 1 

IBD P 988 540 1 1800 1 540 1 1800 1 

IBD T 453 540 1 1800 1 540 1 1800 1 

IBD T 950 540 1 1800 1 540 1 1800 1 

IBD T 988 540 1 1800 1 540 1 1800 1 

IM R 453 540 1 1800 1 0 0 0 0 

IM R 950 540 1 1800 1 0 0 1800 137, 1254 

IM R 988 540 1 1800 1 0 0 1800 47 

IM P 453 540 1 1800 1 0 0 1800 3, 1726 

IM P 950 540 1 1800 1 0 0 1800 
1, 370, 402,              

462, 494, 1521 

IM P 988 540 1 1800 1 0 0 1800 2, 66, 207, 1295, 1385 

IM T 453 540 1 1800 1 0 0 1800 
3, 891, 1311,              
1559, 1785 

IM T 950 540 1 1800 1 0 0 1800 5, 1600 

IM T 988 540 1 1800 1 540 125 1800 1, 845, 1219, 1681 


	Forester_et_al-2017-Molecular_Ecology
	Forester_etal_2018_SI

