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Abstract

The spatial structure of the environment (e.g. the configuration of habitat patches) may

play an important role in determining the strength of local adaptation. However, previ-

ous studies of habitat heterogeneity and local adaptation have largely been limited to

simple landscapes, which poorly represent the multiscale habitat structure common in

nature. Here, we use simulations to pursue two goals: (i) we explore how landscape

heterogeneity, dispersal ability and selection affect the strength of local adaptation,

and (ii) we evaluate the performance of several genotype–environment association

(GEA) methods for detecting loci involved in local adaptation. We found that the

strength of local adaptation increased in spatially aggregated selection regimes, but

remained strong in patchy landscapes when selection was moderate to strong. Weak

selection resulted in weak local adaptation that was relatively unaffected by landscape

heterogeneity. In general, the power of detection methods closely reflected levels of

local adaptation. False-positive rates (FPRs), however, showed distinct differences

across GEA methods based on levels of population structure. The univariate GEA

approach had high FPRs (up to 55%) under limited dispersal scenarios, due to strong

isolation by distance. By contrast, multivariate, ordination-based methods had uni-

formly low FPRs (0–2%), suggesting these approaches can effectively control for popu-

lation structure. Specifically, constrained ordinations had the best balance of high

detection and low FPRs and will be a useful addition to the GEA toolkit. Our results

provide both theoretical and practical insights into the conditions that shape local

adaptation and how these conditions impact our ability to detect selection.
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Introduction

Understanding the role of the environment in driving

spatial patterns of biodiversity is a central goal in evo-

lutionary biology and ecology. Local adaptation to envi-

ronmental conditions is a major source of such spatial

patterns. The extent of local adaptation is largely

shaped by the interaction between selection and gene

flow along selective gradients (Haldane 1930; Mayr

1963; Slatkin 1973; Nagylaki 1975; Felsenstein 1976;

Garc�ıa-Ramos & Kirkpatrick 1997; Lenormand 2002).

When selection is weak relative to gene flow, local

adaptation may be inhibited due to migration load

(Lenormand 2002). Conversely, when selection is strong

local adaptation may occur under a migration–selection
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balance due to selection against maladapted migrants

(Yeaman & Whitlock 2011). However, at low levels of

dispersal when genetic variance within populations lim-

its adaptation, increasing dispersal may increase genetic

variance and favour local adaptation (Barton 2001; Bell

& Gonzalez 2011). Many theoretical approaches to

studying spatial patterns of biodiversity have tended to

be in systems that are spatially implicit or have a one-

dimensional linear environmental gradient (e.g. Holt &

Gaines 1992; Kirkpatrick & Barton 1997; Mouquet &

Loreau 2003). However, the geometry, or spatial struc-

ture, of environmental gradients may play an important

role in determining spatial patterns of biodiversity

(Felsenstein 1977; Palmer 1992; Lenormand 2002; Holt

& Barfield 2011; Frean et al. 2013; Schiffers et al. 2014).

The spatial configuration of the landscape (i.e.

arrangement of, and distance between habitat patches)

can affect the probability of gene flow between habitats

and therefore have important implications for the gen-

eration and maintenance of local adaptation (reviewed

in Hedrick 1986, 2006; Lenormand 2002; Kawecki &

Ebert 2004). For a given strength of selection gradient,

local adaptation may be facilitated in landscapes with a

high level of habitat aggregation (e.g. shallow continu-

ous environmental gradients, Fig. 1a, and large

homogenous habitat patches, Fig. 1c,d) because

migrants will often disperse into similar environments

(Endler 1973; Slatkin 1973). By contrast, in landscapes

with low levels of habitat aggregation (e.g. highly

heterogeneous habitats, Fig. 1b), local adaptation may

be weaker as gene flow between these habitats over-

whelms selection (Garant et al. 2007). Importantly, these

outcomes largely depend on the interaction of habitat

configuration with levels of dispersal and selection

strength (Slatkin 1973; Garant et al. 2007). For example,

empirical studies have demonstrated patterns of fine-

scale local adaptation (i.e. microgeographic adaptation)

to heterogeneous habitats when dispersal is low (Tack

& Roslin 2010; Paccard et al. 2013). To provide insight

into the expected frequency and strength of local adap-

tation in nature, we must characterize how habitat

heterogeneity, dispersal and selection interact (Richard-

son et al. 2014). However, there have been few studies

conducted on heterogeneous landscapes with a multi-

scale structure approaching the spatial continuum com-

mon in nature (Schiffers et al. 2014). Studying the

(a)

(b)

(c)

(d)

Fig. 1 Landscape selection configurations used for simulations.

(a) Continuous selection gradient representing selection for AA

genotypes in the north (dark) and aa genotypes in the south

(light). Examples of discrete selection landscapes, from least to

most aggregated: (b) H1, (c) H5 and (d) H9. Dark areas repre-

sent AA habitat and light areas represent aa habitat. Points rep-

resent the 500 sampled individuals.
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effects of migration, selection and spatial structure is

essential in realistic landscapes given that increasing

complexity in the spatial structure of environments may

generate counter-intuitive effects on local adaptation

(Holt & Barfield 2011).

One approach to characterizing empirical patterns of

local adaptation is to examine the extent to which spa-

tial environmental variation coincides with genotypic

variants (Hedrick et al. 1976; Mitton et al. 1977), i.e.

genotype–environment association (GEA) methods (e.g.

Joost et al. 2007, 2013; Coop et al. 2010; Frichot et al.

2013; Rellstab et al. 2015). GEA methods can be used to

detect selection in cases where environmental gradients

are continuous and when populations are not clearly

distinguishable (Jones et al. 2013). This is an advantage

when studying species that do not group into discrete

populations or habitat types, or when studying species

for which there is little prior ecological or genetic infor-

mation (Jones et al. 2013; Joost et al. 2013). Simulation

studies have examined the ability of GEA methods to

detect selection under different scenarios of selection

intensity, population structure and sampling schemes

(De Mita et al. 2013; Jones et al. 2013; De Villemereuil

et al. 2014; Lotterhos & Whitlock 2015). However, to

date, few simulation studies have addressed the effect

of spatially heterogeneous selection surfaces on the per-

formance of GEA methods. Additionally, no simulation

studies have addressed how the interactions between

landscape heterogeneity, dispersal and selection affect

our ability to detect local adaptation using GEA

approaches.

Here, we explore the effects of environmental hetero-

geneity, dispersal ability and selection on the strength

of local adaptation through simulations. A simulation

framework is valuable because it allows for stochastic

demography and evolution, and also makes the study

of complex landscapes more tractable compared with

analytical models (Bridle et al. 2010). We test a suite of

GEA methods in the simulation parameter space to

determine how these factors impact our ability to detect

patterns of local adaptation. A major difficulty in any

approach to detect selection in the genome is distin-

guishing between patterns of selection and population

history or structure (e.g. population expansions, popula-

tion bottlenecks, isolation by distance). Patterns

resulting from population history can generate geno-

type–environment correlations similar to those underly-

ing local adaptation, resulting in high false-positive

rates (i.e. incorrectly identifying a locus as under selec-

tion when it is not, Jensen et al. 2005; Meirmans 2012).

One way to overcome this problem is to control for

genomewide patterns of variation, assumed to reflect

population history. Several univariate mixed-model-

based GEA approaches have been used to limit false

positives (e.g. generalized linear and additive mixed

models, Jones et al. 2013; models using an empirical

covariance matrix, G€unther & Coop 2013; and latent

factor mixed models, LFMM, Frichot et al. 2013). How-

ever, univariate approaches, which test one locus and

one predictor variable at a time, are not ideal because

in reality, selection affects many loci and is driven by

many variables simultaneously (Hahn 2008; Orsini et al.

2012). Some multivariate methods, which take high-

dimensional multilocus genetic data and reduce it into

a lower dimensional space, may be able to account for

the joint action of selection and demography across the

genome. For instance, ordination methods, which have

a long history in plant and community ecology (Whit-

taker 1967; Van den Wollenberg 1977; Austin 1987; ter

Braak 1987; Fitzpatrick & Keller 2015), extract trends

from multivariate data by summarizing these data into

a reduced set of uncorrelated axes (Jombart et al. 2009;

Legendre & Legendre 2012). The similarities between

community ecology and genomic data, namely a large

number of variables (species or loci) observed at a set

of sampling locations (sites or individuals/demes),

imply that these analytical techniques could be effec-

tively applied to large genomic data sets (e.g. Fitz-

patrick & Keller 2015).

In a GEA framework, we can potentially distinguish

outliers by looking for loci that show unique or unusual

patterns in the ordination space. Because the ordination

is explaining covariation in the data, we expect it to

model patterns that affect the majority of the loci, such as

those that arise due to population history. While princi-

pal components analysis, a common ordination tech-

nique, has been used to detect population structure in

genetic data for nearly 50 years (Cavalli-Sforza 1966),

only recently has it been used to correct for population

structure in genomewide association studies (akin to

GEA, Price et al. 2006; Patterson et al. 2006). In a novel

use of ordination for multivariate outlier detection, Lasky

et al. (2012) used redundancy analysis to quantify SNP

variation in georeferenced Arabidopsis accessions with

reference to geography and climate variables. We build

on this and other recent empirical work using ordination

methods for outlier detection (Duforet-Frebourg et al.

2015; Galinsky et al. 2015) by assessing a suite of ordina-

tion methods and a computationally efficient correlative

mixed-model approach for their ability to detect selected

loci under various spatial selection regimes.

Materials and methods

Simulation framework

We conducted simulations in the program CDPOP v1.2

(Landguth & Cushman 2010), which models population

© 2015 John Wiley & Sons Ltd
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genetic change across a landscape surface as a function

of mutation, mating, gene flow, drift and selection. Our

simulations consisted of 5000 diploid individuals with

100 bi-allelic loci; one of these loci was subject to selec-

tion (except for ‘no selection’ runs; see details below).

All loci experienced a 0.0005 mutation rate per genera-

tion, free recombination and no physical linkage. We

ran 10 Monte Carlo replicates of each simulation for a

total of 1250 generations, discarding the first 250 gener-

ations as burn-in (no selection imposed) to establish a

spatial genetic pattern prior to initiating the landscape

selection configurations. Three of the simulations were

run with a zero mutation rate to assess the impact of

mutation rate on detection results (Table S1, Supporting

information).

Simulation scenarios

We generated simulations under different combina-

tions of landscape selection configuration, selection

strength and dispersal capacity. We tested two types

of landscape selection configurations: a continuous

selection gradient landscape and discrete selection

landscapes (Fig. 1). In the continuous selection gradi-

ent landscape (referred to as ‘G’ landscapes), selection

acted in a continuous clinal fashion along an environ-

mental gradient with different homozygous genotypes

(AA and aa) favoured at different ends of the gradient

(referred to as north and south), reflecting a pattern

of antagonistic pleiotropy (Fig. 1a; Jones et al. 2013).

Discrete selection landscapes included discrete habitat

types (type ‘AA’ or ‘aa’, Fig. 1b–d) in which AA and

aa genotypes were favoured in their respective habitat

patches. For the discrete selection scenarios, we used

the neutral landscape model QRULE (Gardner 1999) to

simulate binary landscape maps (1024 9 1024 pixels).

Habitat fragmentation was controlled with the H

parameter, which affects the aggregation of habitat

pixels; higher values of H lead to higher levels of

aggregation. The discrete landscapes consisted of 50%

of each habitat type and aggregation levels of H = 0.1

(‘H1’, Fig. 1b), 0.5 (‘H5’, Fig. 1c) and 0.9 (‘H9’,

Fig. 1d). We produced 10 replicate landscapes for

each H value to average across stochastic variation

among simulated landscapes.

Across these different spatial selection configurations,

we tested the effects of varying selection strength, medi-

ated through density-independent (i.e. environment-dri-

ven) mortality (s) determined by genotypes at the

selected locus. Selection strengths included s = 0.01 or

‘1%’, s = 0.05 or ‘5%’, s = 0.10 or ‘10%’, and s = 0.50 or

‘50%’. We also included simulations with ‘no’ selection

(s = 0) as a null model. In the continuous selection gra-

dient scenario, AA experienced 0% mortality in the

north and s mortality (either 1%, 5%, 10% or 50%) in

the south, while the aa genotype was given the opposite

selection gradient surface (0% mortality in the south

and s mortality in the north). The Aa genotype experi-

enced uniform density-independent mortality across the

surface equal to the mean mortality of the two homozy-

gotes at the extreme ends of the gradient (s/2; e.g. 25%

density-independent mortality for 50% selection). For

the discrete selection landscape scenarios, AA individu-

als had no mortality in ‘AA’ patches and experienced

1%, 5%, 10% or 50% mortality if they occurred in ‘aa’

patches. Individuals with aa genotypes at the locus

under selection experienced the opposite selection gra-

dient. The Aa genotypes again experienced uniform

selection (s/2) across the entire surface.

Finally, we tested the effects of six dispersal levels

(3%, 5%, 10%, 15%, 25% and 50%) that represent the

maximum percentage of the landscape surrounding an

individual that is available for movement and mating.

These dispersal levels represent a range of biologically

realistic dispersal distances per generation, from mini-

mal dispersal (3%, e.g. terrestrial salamanders or grav-

ity-dispersed seeds) to long-distance dispersal (50%, e.g.

passerine birds or wind-dispersed seeds). Mating pairs

of individuals and dispersal locations of offspring were

chosen based on a random draw from the inverse-

square probability function of distance, truncated with

the specified maximum distance.

Mating parameters represented a population of uni-

sexual individuals with females and males mating with

replacement. The number of offspring produced from

mating was determined from a Poisson distribution

(k = 4), which produced an excess of individuals each

generation to maintain a constant population size of

5000 individuals at every generation. Carrying capacity

of the simulation surface was 5000 individuals. Excess

individuals were discarded once all 5000 locations

became occupied, which is equivalent to forcing out

emigrants once all available home ranges are occupied

(Balloux 2001; Landguth & Cushman 2010).

Isolation by distance and local adaptation

We sampled 500 randomly selected individuals from

the 5000 available individuals in the simulation space.

This same set of 500 individuals was sampled from

each simulation for all subsequent analyses (plotted in

Fig. 1). We did not vary sample size or sampling

scheme in this analysis, although assessing the impact

of sample size and sampling approaches will be an

important area for follow-up (see ‘Future directions’).

We measured isolation by distance (IBD) across all

loci in each simulation using spatial eigenfunction

analysis and multivariate linear regression, as

© 2015 John Wiley & Sons Ltd
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proposed by Diniz-Filho et al. (2013) and Legendre

et al. (2015). First, we applied a principal coordinate

analysis (PCoA, details below) to the pairwise multi-

variate genetic distance matrix, which was calculated

using Bray–Curtis distance (Bray & Curtis 1957). We

retained PCoA axes based on the broken-stick crite-

rion (Legendre & Legendre 2012); retained axes were

used as the response data in the subsequent redun-

dancy analysis (multivariate linear regression, or

RDA, details below). Spatial eigenfunctions (distance-

based Moran’s eigenvector maps, dbMEMs) were cal-

culated from the coordinates of the samples and used

as predictors in the RDA. Forward selection was used

to reduce the number of dbMEMs (Blanchet et al.

2008). We calculated adjusted R2 statistics (R2
adj) and

assessed significance using 1000 permutations. These

analyses used the packages ‘VEGAN’ (Oksanen et al.

2013), ‘PCNM’ (Legendre et al. 2012), ‘BOOT’ (Canty &

Ripley 2012) and ‘PACKFOR’ (Dray et al. 2011) in R v.

2.15.2 (R Development Core Team 2012). These results

were compared to r2 values derived from simple

Mantel’s tests of Bray–Curtis genetic distances and

the log of geographic distance, using the ‘ECODIST’

package (Goslee & Urban 2007). Mantel r values were

squared to facilitate comparison with R2
adj statistics

from spatial eigenfunction and redundancy analysis

(Table S2, Supporting information).

To assess the strength of local adaptation, we quanti-

fied the relationship between allele frequencies and

selection gradients. To do so, we converted the allele

frequency at the locus under selection to the number of

‘A’ alleles, and arbitrarily converted selective gradients

to numerical values: for continuous landscapes, we

used the value of the continuous habitat (ranging

between 0 and 1) occupied by each individual; for dis-

crete landscapes, we used the value of the discrete habi-

tat (0 or 1, corresponding to ‘aa’ or ‘AA’ habitat)

occupied by each individual. Local adaptation was then

determined by Pearson correlation between the allele

frequency and selective gradient.

Genotype–environment association methods

We used both multivariate and univariate GEAs to

assess the genetic signature of local adaptation. Multi-

variate ordination methods take two main forms: indi-

rect ordinations, which use internal patterns of

association in the genetic data to explain as much

genetic variability as possible in the smallest number of

axes; and constrained ordinations, which use a similar

approach but restrict the ordination axes to be combina-

tions of supplied explanatory variables. We used two

indirect ordinations and two constrained ordinations to

detect covariation between allele frequencies and

environmental variables (described below). More details

of ordination methods can be found in Legendre &

Legendre (2012), with representative applications to

genetic data in Jombart et al. (2009).

Principal components analysis (PCA) is an indirect

ordination that constructs a new set of axes for a multi-

variate data set that maximally explain the variance in

the data. This approach uses linear combinations of the

original axes and preserves the Euclidean distance

among objects. Principal coordinate analysis (PCoA) is

an indirect ordination similar to PCA. However, PCoA

is an eigenanalysis of the distance (or any distance-

based metric) among observations. Where PCA uses lin-

ear combinations of the original axes, PCoA axes are

influenced by the chosen distance metric, producing a

representation of objects in Euclidean space while pre-

serving the chosen distance metric. For example, PCoA

of a Euclidean distance matrix would yield a PCA solu-

tion.

Redundancy analysis (RDA) is a constrained ordina-

tion that extends linear regression to multivariate

response data in order to maximize the proportion of

the response variable that is explained. Linear combina-

tions of the response variable (in this case, genetic data)

are modelled as a function of linear combinations of the

predictors (in this case, environmental data). Redun-

dancy analysis involves a two-step process in which a

multivariate linear regression is computed between

genetic and environmental data to produce a matrix of

fitted values, and then a PCA of the fitted values pro-

duces canonical axes, which are linear combinations of

the original explanatory variables. Distance-based

redundancy analysis (dbRDA) is the constrained ver-

sion of PCoA and the analogue of an RDA based on a

dissimilarity matrix. In this case, genetic data are sub-

ject to PCoA and the resulting eigenvectors are used as

the response variable in RDA, producing the dbRDA

ordination.

We compared these ordination methods to latent fac-

tor mixed models (LFMMs), which use a hierarchical

Bayesian mixed modelling approach to identify allele–
environment correlations, while modelling residual

population structure with ‘latent factors’ (Frichot et al.

2013). Latent factors are similar to principal compo-

nents; in fact, when the number of latent factors (K)

equals the number of loci in the data set, it is analogous

to a PCA (Frichot et al. 2013). The computational effi-

ciency of LFMMs comes from the flexibility to use a

smaller latent factor value than the total number of loci.

The value of K can have a large impact on LFMM

results: larger values of K increase false-negative rates,

while smaller values of K increase false-positive rates.

For this reason, we used two approaches to determine

the value of K (see below).

© 2015 John Wiley & Sons Ltd
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Genetic data were coded as the number of ‘A’ alleles

at each locus (monomorphic loci were removed). We

standardized genetic and environmental data (i.e. scaled

to unit standard deviation and centred on the mean) for

PCA and RDA and calculated multivariate Bray–Curtis
distances for PCoA and dbRDA. For continuous selec-

tion gradient analyses, we standardized two indepen-

dent environmental variables: the x-coordinate location

of an individual (‘x’) and the y-coordinate location of

an individual (‘y’). For discrete selection simulations, a

third standardized habitat variable (‘habitat’) was also

used, which describes whether an individual was

located in an ‘AA’ or ‘aa’ patch (calculated using the

‘RASTER’ package, Hijmans 2014).

For all ordinations, outlier loci were identified on

each of the first three ordination axes as those loci with

a ‘locus score’ that was �3 SD from the mean score for

that axis. Locus scores are the coordinates of each

locus in the ordination space (called ‘species scores’ in

the ‘VEGAN’ package). For PCoA, where locus scores are

not automatically calculated, we computed weighted

average scores for each locus using the ordination score

and SNP allele frequency (function ‘wascores’ in ‘VE-

GAN’). Once outlier loci were identified, they were then

tested for association with environmental variables by

calculating the correlation between the allele frequen-

cies at that locus and each environmental variable. Sig-

nificant relationships had a P-value <0.001. All

ordinations were conducted using the ‘VEGAN’ package.

For LFMMs, we used two methods to determine

the value of K: the Patterson method (also called the

Tracy–Widom test, Patterson et al. 2006) and the mini-

mum average partial test (MAP, Shriner 2012). While

the Patterson approach tends to overestimate the

number of significant principal components, resulting

in larger values of K, the MAP approach tends to

estimate smaller values of K (Table S3, Supporting

information). Values of K were calculated using the

‘RMTSTAT’ package (Johnstone et al. 2009) and code pro-

vided by Daniel Shriner (2012). Results were compara-

ble across both K selection methods; however, the

Patterson approach generally resulted in lower false-

positive rates. LFMM results using the Patterson K

are presented here, with MAP K results presented in

Table S4, Supporting information. We ran LFMMs

using the command line version (1.2) for LINUX, down-

loaded from http://membres-timc.imag.fr/Eric.Fri-

chot/lfmm/software.htm. We used 1200 iterations and

a burn-in period of 200 and tested a subset of models

to ensure results converged at this run length. LFMM

outliers were detected as those loci with a P-value

<0.001 after Bonferroni correction.

For each GEA method, we calculated the following

metrics and averaged across 10 replicates for each

simulation scenario: true-positive rate (TPR, the number

of correct positive detections of one possible), false-

positive rate (FPR, the number of incorrect positive

detections of 99 possible) and a ‘GEA index’ that

assesses parameter estimation for each method (i.e. cor-

rectly identifying the driving environmental variable).

The GEA index ranges between 3 (best performance)

and 0 (worst performance) and was coded as follows

for continuous selection gradients, where the locus

under selection was driven by y: 3 = the correct identifi-

cation: y is the most significant variable identified; 2 = y

is significant but less significant than x; 1 = y is not

detected as significant, but x is detected; and 0 = no

environmental variable is detected. Similarly, the GEA

association index for discrete selection simulations was

coded as follows: 3 = the correct identification: habitat is

the most significant variable identified; 2 = habitat is

significant but less so than y or x, 1 = habitat is not

detected as significant, but y or x are detected; and

0 = no environmental variable is detected as signifi-

cantly associated with the locus under selection. Spuri-

ous correlations (GEA index = 1) were distinguished

from ‘no detection’ (GEA index = 0) because we expect

that the spatial dependence of environmental predictors

will sometimes result in correct identification of a locus

under selection but incorrect detection of the driving

predictor (Wagner & Fortin 2005).

Results

Isolation by distance and local adaptation

We assessed genomewide IBD using spatial eigenfunc-

tion analysis and RDA. As expected, dispersal distance

primarily shaped patterns of IBD across simulations.

IBD increased with decreasing dispersal distance, rang-

ing from a minimum R2
adj = 0.01 at 50% dispersal capac-

ity to a maximum R2
adj = 0.36 at 3% dispersal capacity

(Fig. 2a). By contrast, increasing selection strength and

increasing aggregation of habitat (i.e. factors that

increase the strength of local adaptation) led to only

small increases in patterns of genomewide IBD

(Fig. 2a). Detection of IBD via spatial eigenfunction/

RDA analysis and Mantel’s tests were comparable,

although the strength of the relationship was always

weaker for Mantel’s tests (Table S2, Supporting infor-

mation; Diniz-Filho et al. 2013).

The strength of local adaptation was determined by

quantifying the relationship between the allele fre-

quency of the selected locus and selection gradients.

Habitat configuration had a major effect on the strength

of local adaptation. Overall, local adaptation increased

with increasing levels of habitat aggregation (i.e. lowest

for H1 and highest for continuous gradient habitats,
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ronment, averaged across ten replicates

of each simulation scenario (b).

© 2015 John Wiley & Sons Ltd

110 B. R . FORESTER ET AL.



Figs 2b and 3). The effect of habitat configuration on

the strength of local adaptation was weakest under high

dispersal and weak selection and became stronger as

dispersal decreased and selection increased (Fig. 3). All

landscape configurations showed a pattern of larger

increases in local adaptation from 1% to 5% selection

and 10% to 50% selection, with a much smaller increase

from 5% to 10% selection (Fig. 3).

Dispersal level had the strongest effect on patterns of

local adaptation under moderate (5% and 10%) selection

strengths (Fig. 3). The average increase in the strength

of local adaptation from the highest (50%) to the lowest

(3%) dispersal level was nearly two times greater under

5% and 10% selection compared to 1% and 50% selec-

tion (Fig. 3). At the highest dispersal levels (25–50%),

the strength of local adaptation remained high under

50% selection (Fig. 3), indicating that selection was

strong enough to maintain local adaptation despite high

gene flow.

Effects of landscape, selection, and dispersal on
detection probability

We found that highly aggregated selection landscapes

(continuous selection gradients, highly aggregated dis-

crete habitats) produced stronger local adaptation

(Figs 2b and 3) and correspondingly detection methods

were generally more powerful (higher TPRs, Fig. 4) and

better able to detect the driving environmental variable

(stronger GEA indices, Fig. 5).
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Local adaptation is assessed by correlation between the selected locus and environment, averaged across ten replicates of each simu-

lation scenario.
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Under 1% selection the selected locus was rarely

detected by most methods, regardless of dispersal

level (Fig. 4). Under 5% and 10% selection, TPRs were

negatively associated with dispersal capacity, with the

highest dispersal values inhibiting detection of the

selected locus. However, with 50% selection, TPRs for

most methods were high regardless of dispersal

capacity. Generally, lower dispersal rates resulted in

higher levels of IBD and local adaptation (Fig. 2),

accompanied by higher TPRs (Fig. 4) and stronger

GEA indices (Fig. 5).

Method comparison

False-positive rates across ordination methods were

uniformly low (0–2%, Fig. 6a–d) and unaffected by

habitat configuration, selection strength or dispersal

capacity. The univariate method we tested, LFMM

(using Patterson K), had much higher FPRs compared

to ordination methods at low-to-moderate dispersal

levels (3–15%). Average FPRs greater than 40% were

common for LFMM with 3% and 5% dispersal, with

a maximum average FPR of 55% on gradient selection
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surfaces (Fig. 6e). Although LFMMs had the highest

power under weak selection/low dispersal simulations

(Fig. 4e), FPRs for these scenarios averaged 40%

(Fig. 6e). Ordinations had uniformly low TPRs and

FPRs across weak selection scenarios. FPRs for no

selection simulations (used as a null model) were

nearly identical to FPRs in selection simulations

(Fig. S1, Supporting information).

Of the four ordination methods, constrained ordina-

tions (RDA and dbRDA) had the highest TPRs (Fig. 4)

and strongest GEA indices (Fig. 5) across all scenarios

when compared to indirect methods (PCA and PCoA).

TPRs and GEA indices were generally high across most

dispersal levels for constrained ordinations, while indi-

rect methods showed a pattern of stronger TPRs and

GEA indices at intermediate dispersal levels.

Effect of mutation rate

A subset of the simulations were run with a zero muta-

tion rate to assess the impact of the chosen mutation

rate (0.0005 per generation) on detection results. Differ-

ences in detection rates, IBD and local adaptation were

assessed with paired t-tests. There were few significant
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Fig. 5 Average genotype–environment association (GEA) index across ten replicates of each simulation scenario. Correct detection (3)

has dark shading, with no detection (0) in light shading. Results for (a) principal components analysis, (b) principal coordinate analy-

sis, (c) redundancy analysis, (d) distance-based redundancy analysis and (e) latent factor mixed models.
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differences at a = 0.05: four cases for FPRs and two

cases for IBD (Table S1, Supporting information).

Discussion

Spatial environmental variation plays a central role in

maintaining spatial patterns of biodiversity, many of

which are due to local adaptation. However, many pop-

ulations fail to adapt along environmental gradients,

partly due to the interaction between dispersal and the

spatial structure of the environment. Existing knowl-

edge of the relationship between spatial environmental

structure and local adaptation has been largely based

on the study of linear or monotonic environmental gra-

dients (e.g. Holt & Gaines 1992; Kirkpatrick & Barton

1997), with few studies considering how the complexity

of realistic landscapes may affect patterns of local adap-

tation (Holt & Barfield 2011; Schiffers et al. 2014). Our

understanding of the geographic mosaic of selection

depends on our ability to detect genomic signatures of

selection in realistic landscapes. To this end, we exam-

ined how the interplay between environmental hetero-

geneity, dispersal ability and selection affects the

strength of local adaptation and our ability to detect
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selection in continuously distributed populations. Our

study provides a quantitative assessment of the spatial,

dispersal and selective conditions that favour the gener-

ation and maintenance of local adaptation, and may

guide more accurate predictions regarding the strength

of local adaptation in nature.

We found strong effects of habitat configuration on

local adaptation, supporting previous work by Lotter-

hos & Whitlock (2014). The strength of local adaptation

increased as habitat was more aggregated and as dis-

persal levels decreased (Figs 2b and 3). This pattern is a

product of the interplay of habitat patchiness, and the

chance a dispersing individual will end up in a suitable

habitat patch (i.e. the flow of alleles across environmen-

tal gradients, Lenormand 2002). As habitat aggregation

increases, the spatial autocorrelation in selective gradi-

ents also increases, decreasing the probability of gene

flow between different selective regimes. Additionally,

the effect of habitat configuration on local adaptation

was greater under limited dispersal and stronger selec-

tion (Fig. 3). The lack of an effect of configuration under

high dispersal and weak selection may be explained by

the theoretical result of Slatkin (1973), who found that

local adaptation will not occur below the ‘characteristic

length’ (equal to the average dispersal distance divided

by the square root of the selection differential). That is,

when dispersal is high and selection weak, the charac-

teristic length is very high, potentially higher than even

our most aggregated landscapes. Indeed, in more spa-

tially aggregated landscapes (H5, H9, and continuous

gradient), weak selection was largely ineffective in gen-

erating a pattern of local adaptation, suggesting that

when selection is weak the extent of landscape hetero-

geneity is of minor importance in shaping or preventing

local adaptation. We did not find evidence that habitat

aggregation mediated nonlinear effects of dispersal on

local adaptation via effects on genetic variance (Barton

2001), likely because evolution in our simulations was

not limited by genetic variance. Our findings closely

parallel results from stochastic spatially explicit simula-

tions of both population genetics (Behrman & Kirk-

patrick 2011; Schiffers et al. 2014) and ecological

communities (Palmer 1992; Lasky & Keitt 2013), where

dispersal and the spatial structure of environmental

gradients interact to determine the importance of the

environment in driving spatial biodiversity.

We found that local adaptation in our simulated fine-

grained landscapes (H1) occurred even in the face of

substantial gene flow when selection was moderate to

strong (10–50%, Figs 2b and 3). Our findings support

results from empirical case studies of local adaptation

to small, patchily distributed habitats, known as micro-

geographic adaptation (Allen & Sheppard 1971; Tack &

Roslin 2010; Richardson et al. 2014), which requires very

strong selective gradients or very restricted gene flow

(Slatkin 1975). Additionally, the more pronounced

decline in local adaptation with increasing gene flow

for moderate selection strengths (5–10%) illustrates a

shift in the migration–selection balance response across

selection levels; while weak (1%) and strong (50%)

selection show only modest changes in local adaptation

across dispersal levels (very low and very high levels of

local adaptation for 1% and 50% selection, respectively),

moderate selection strengths are much more sensitive to

increasing gene flow (Fig. 3).

We found evidence for modest genomic divergence

driven by limitations on gene flow due to selection (i.e.

‘isolation by environment’, Barton 1979; Wang & Brad-

burd 2014). Specifically, changes in habitat aggregation

and the strength of selection had small effects on spatial

structure at neutral sites (Fig. 2a). The weak effect of

selection on neutral sites here was likely due to the lack

of physical linkage between loci in our simulations (i.e.

high recombination) and monogenic local adaptation

(Barton 1979).

We did not explore several factors that may play an

important role in determining the strength of local

adaptation and our ability to detect it, such as carrying

capacity and genetic architecture. Carrying capacity can

interact with dispersal to affect local adaptation, as

lower carrying capacity increases the chance of popula-

tion extinction under high migration load (Bridle et al.

2010). Additionally, polygenic architecture may interact

with spatial structure of the environment. Schiffers et al.

(2014) found that the effects of the spatial structure of

selective gradients on local adaptation are contingent

on the genetic architecture of traits under selection,

such that under some scenarios, local adaptation is

weaker for polygenic traits in highly aggregated habi-

tats. In general, migration load may be higher for poly-

genic traits (Lenormand 2002), due to swamping of

many alleles with small fitness effects. The loci underly-

ing polygenic local adaptation will be considerably

more challenging to detect statistically (Yeaman 2015).

Evaluation of detection methods

To leverage information contained in population geno-

mic data sets, it is essential to develop statistical

approaches capable of robustly detecting loci underly-

ing local adaptation in complex landscapes. This is a

major challenge because the factors that facilitate local

adaptation (e.g. limited dispersal) may also produce

genomewide patterns that confound the detection of

loci under selection (e.g. population structure and IBD).

As expected, detection methods generally had their

poorest performance under combinations of weak (1%)

selection, high dispersal (25–50%) and high habitat
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heterogeneity (H1). Increasing selection from 1% to 5%

resulted in pronounced overall improvement to detec-

tion rates, especially for ordination methods (Figs 4 and

5).

The most striking result from our methods compar-

ison is the ability of ordination techniques to effectively

control for population structure due to IBD, a major

contributor to high false-positive rates when testing for

loci under selection (Meirmans 2012). Ordination meth-

ods produced uniformly low FPRs (0–2%, Fig. 6a–d), in
contrast to LFMMs, which produced very high FPRs

(up to 55%, Fig. 6e) under low dispersal scenarios. Low

dispersal generates high levels of IBD (Fig. 2a), con-

tributing to spurious genotype–environment correla-

tions (Meirmans 2012). However, under weak (1%)

selection and limited dispersal, there is a trade-off

between power to detect local adaptation and control-

ling for IBD. Ordinations have uniformly low power

under weak selection, while LFMM have higher power

under weak selection/low dispersal scenarios (Fig. 4),

which comes at the cost of high false-positive rates (39–
44%, Fig. 6e). While LFMMs incorporate latent factors

in an effort to control for population structure, we find

that this approach is insufficient for the strong signals

of IBD generated with low dispersal. This is likely due

to the ambiguity in determining the number of latent

factors (K) at low dispersal levels in our individual-

based framework (Table S3, Supporting information). In

low dispersal simulations, there was large disagreement

between the two assessments of K (the Patterson and

MAP approaches), whereas in higher dispersal simula-

tions, the two methods converged on a similar value

(Table S3, Supporting information). The reasons for

divergence in estimating K under high IBD scenarios

are unclear. However, even when using the more con-

servative Patterson method to assign K, FPRs were high

in cases of strong IBD (Figs. 6e and 2a).

Ordinations take a different approach to controlling

for population structure that does not require the a pri-

ori assignment of structure. Generally, the ordinations

tested here take the multidimensional scatter of genetic

data and create a reduced set of axes that maximize the

variability explained (Legendre & Legendre 2012).

Because processes that produce population structure

are expected to affect all neutral loci in a similar man-

ner, these loci will tend not to show unique or unusual

patterns in the ordination space; instead, the first few

ordination axes will capture these main drivers of struc-

ture.

Among the four ordination methods, we found two

interesting patterns: (i) constrained ordinations have the

highest TPRs (Fig. 4) and strongest GEA indices (Fig. 5)

across all scenarios when compared to indirect meth-

ods; and (ii) indirect methods show a pattern of

stronger GEA indices and TPRs at intermediate disper-

sal levels. The better performance of constrained over

indirect ordinations is related to differences in how the

ordination axes are derived between the two

approaches. Constrained ordinations find combinations

of multiple predictor variables that explain multiple

response variables. The inclusion of predictor variables

that are thought to drive selection essentially reorders

the ordination axes to prioritize trends explained by

those variables. In the case of our simulations, this

means that the locus under selection will tend to be

detected on one of the first three constrained axes (since

we used three explanatory variables, Fig. 7c,d). By con-

trast, indirect ordinations, which proceed based solely

on internal patterns of variability in the genetic data

(with no reference to environment), are unlikely to

detect the locus under selection within the first few

ordination axes. This is because the anomalous pattern

created by that locus is unlikely to have a signal that is

strong enough to load on the first few axes (Fig. 7a,b).

This difference in how the ordination axes are pri-

oritized between indirect and constrained methods

may also explain why the adaptive signals detected

by indirect ordinations were strongest at intermediate

dispersal levels (Figs 4a,b and 5a,b). When dispersal

was very high, gene flow resulted in the selected

locus being common in areas where it was maladap-

tive, weakening the signal of local adaptation (Fig. 2b,

Garc�ıa-Ramos & Kirkpatrick 1997; Lenormand 2002;

Garant et al. 2007). When dispersal was limited, the

adaptive signal was relegated to minor axes (with

low overall explanatory power) because the first few

ordination axes were dominated by explaining the

high IBD signal in the data (Fig. 2a, Fig. 7a,b). Search-

ing through all of the minor axes (in this case 100

axes total) for the outlier signal would likely result in

a very high false-positive rate.

These results make a strong case for constrained ordi-

nations as an important GEA analytical tool due to their

high power under moderate to strong selection com-

bined with very low false-positive rates (0–1%). Addi-

tionally, these methods can reveal genetic structure

varying from clusters to clines, have no underlying

population genetic assumption (e.g. Hardy–Weinberg

equilibrium) and are computationally efficient (Jombart

et al. 2009). Their low power under weak (1%) selection,

however, points to the utility of taking an ensemble

detection approach, using multiple methods and look-

ing for agreement across approaches (Jones et al. 2013).

However, there is additional evidence from other simu-

lation work (e.g. Tiffin & Ross-Ibarra 2014) that weak

selection is difficult to detect no matter what methods

are used; this will be an important area for further

research (see below).
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Future directions

The number of simulation parameters we tested was

necessarily limited to examine how combinations of

habitat aggregation, dispersal capacity and selection

strength affected local adaptation and detection perfor-

mance. Many variables remain to be tested including

the effects of conditional neutrality (Tiffin & Ross-Ibarra

2014), temporally fluctuating selection, new mutation

vs. standing variation, trait dominance, complex demo-

graphic scenarios (e.g. population expansions along

environmental gradients), population size, and sam-

pling scheme (following up on work by Lotterhos &

Whitlock 2015). The ability of GEA methods to detect

multilocus selection in a controlled framework also

remains untested. This is an important element for

future research because adaptation often occurs via
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coordinated shifts in allele frequencies across large

numbers of loci, many of small effect (Imhof &

Schl€otterer 2001; Kassen & Bataillon 2006; Le Corre &

Kremer 2012; Harrisson et al. 2014; Yeaman 2015). A

recent empirical investigation showed the promise of

multivariate methods for detecting these polygenic sig-

nals of local adaptation (Bourret et al. 2014), while other

studies suggest detecting these loci may be inherently

challenging (Yeaman 2015). Studies that address the

above issues will further our understanding of the con-

ditions that shape local adaptation in wild populations

and how our ability to detect selection changes under

these conditions.
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