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The global climate is changing rapidly, yet biotic responses remain uncertain. Most 
studies focus on changes in species ranges or plastic responses like phenology, but 
adaptive evolution could be equally important. Studying evolutionary responses 
is challenging given limited historical data and a poor understanding of genetically 
variable traits under selection. We take advantage of a historical dataset to test for 
an adaptive response to climate change in a widespread, polymorphic amphibian, 
the eastern red-backed salamander Plethodon cinereus. We resurveyed color morph 
frequencies across New England to test for an adaptive shift in response to climate 
change. We modeled historical and present-day morph proportions as a function of 
climate and tested the accuracy of predictions both within and across different time 
periods. Our models showed moderate accuracy when predicting morph frequen-
cies within time periods, but poor accuracy across time periods. Despite substantial 
changes in climate and significant relationships between morph frequency and cli-
mate variables within periods, we found no evidence for the predicted shift in morph 
frequencies across New England. The relationship between climate and color morph 
frequencies is likely more complex than originally suggested, potentially involving the 
interplay of additional factors such as microclimate variation, land use changes, and 
frequency-dependent selection. Model extrapolation and changes in the correlation 
structure of climate variables also likely contributed to poor predictive ability. Evolu-
tion could provide a means to moderate the effects of climate change on many species. 
However, we often do not understand the direct links between climate variation, traits, 
and fitness. Therefore, forecasting climate-mediated evolution remains an ongoing and 
important challenge for understanding climate change threats to species.
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Introduction

Human-induced climate change is affecting species distributions, species abun-
dances, and ecosystem functions worldwide (Walther  et  al. 2002, Parmesan 2006, 
IPCC 2014). For decades, biologists have been trying to predict the substantial, and 
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often idiosyncratic, responses of species to climate change 
(Barry  et  al. 1995, Parmesan and Yohe 2003, Lenoir  et  al. 
2010, Chen et al. 2011, Crimmins et al. 2011). In response to 
changing conditions, species can track suitable climatic con-
ditions by dispersing (Chen et al. 2011), shifting phenology 
(Parmesan and Yohe 2003, Visser and Both 2005), persisting 
in microclimate refugia (Ashcroft et al. 2012, Scheffers et al. 
2014), or adapting to changing conditions in place (Hoff-
mann and Sgro 2011). Given the complexity of ecological 
systems, the frequent lack of proximal environmental data 
at species-relevant scales, and the scarcity of detailed histori-
cal data, the relative importance of these different responses 
remains unclear for most species (Lavergne et al. 2010, Shaw 
and Etterson 2012, Urban et al. 2016). These factors make it 
difficult to evaluate which species are most at risk of extinc-
tion caused by climate change.

The extent to which we currently understand the relation-
ship between climate change and species responses is largely 
centered on changes in species distributions or phenology. 
However, for some species these responses are unfeasible 
given the magnitude and rate of climate change in combi-
nation with habitat loss and fragmentation. Consequently, 
adapting to changing conditions in place may be a poten-
tially critical response, especially in dispersal-limited species 
(Norberg  et  al. 2012, Urban  et  al. 2012). Rapid adaptive 
responses require sufficient standing genetic variation among 
individuals in order to match the rate of environmen-
tal change (Skelly et  al. 2007, Barrett and Schluter 2008). 
Convincing examples of adaptive responses to climate 
change can be found across a diversity of taxa (Bearhop et al. 
2005, Franks  et  al. 2007, Buckley  et  al. 2012, Chirg-
win et al. 2015), yet in some species, constraints such as lack 
of genetic variation have prevented adaptation to climate 
change (Hoffmann  et  al. 2003). Due to the multidimen-
sional selective pressures created by climate change, we sel-
dom know which traits are under selection or whether those 
traits are heritable and are underlain by sufficient genetic 
variation (Hoffmann and Sgro 2011). Additionally, we often 
lack the historical data needed to validate our predictions, 
which makes adaptive evolution the least understood of 
the responses to climate change (Merilä and Hendry 2014, 
Urban et al. 2014).

Given the above challenges, polymorphic species offer sev-
eral advantages for studying potentially adaptive evolutionary 
responses to climate change. First, genetic variation in the 
form of alternative morphs is already present, and the long-
term persistence of alternative morphs suggests that they 
confer differential fitness advantages in time or space (Fors-
man et al. 2008, Forsman and Wennersten 2016). Second, 
spatial variation in morph frequencies across climatic gradi-
ents often suggests a climate-morph link (Galeotti et al. 2003, 
Lepetz et al. 2009, Antoniazza et al. 2010). Third, the ability 
to score morphs easily in the field provides greater opportuni-
ties to document variation across space and time. As a result, 
the availability of a large-scale, detailed historical dataset for a 
dispersal-limited species with a hypothesized climate-related 

polymorphism provides an exceptional opportunity to assess 
adaptive evolution in response to climate change.

Our study explores the relationship between climate 
and evolutionary responses in a widespread, polymorphic 
amphibian, the eastern red-backed salamander Plethodon 
cinereus. Plethodon cinereus has two common color morphs 
(Fig. 1 inset) that are characterized by the presence (‘striped’) 
or absence (‘unstriped’) of a dorsal stripe. The relative propor-
tions of these morphs vary across the species range in eastern 
North America (Gibbs and Karraker 2006, Moore and Ouel-
let 2015). The color polymorphism is genetically determined, 
although the exact genetic architecture remains unknown 
and may vary across localities (Highton 1959, 1975). As a 
lungless, terrestrial salamander, P. cinereus relies entirely on 
cutaneous respiration, and the need to maintain moist skin 
constrains its activity, including foraging, growth, and repro-
duction (Feder 1983, Peterman and Semlitsch 2013, 2014). 
Given this sensitivity to environmental conditions, climate 
has long been hypothesized to be a primary driver maintain-
ing the color polymorphism in P. cinereus.

Multiple lines of evidence suggest that this polymorphism 
is linked to climate. Geographic patterns of morph frequen-
cies suggest unstriped morphs are cold-intolerant (Lotter and 
Scott 1977, Gibbs and Karraker 2006). Likewise, temporal 
variation in morph frequencies at some sites indicates that 
unstriped morphs are less likely to be active on the surface 
and will retreat to underground refugia in cold temperatures 
(Lotter and Scott 1977, Moreno 1989, Anthony et al. 2008). 
Finally, population-specific physiological and mechanistic 
data show metabolic differences between the color morphs 
corresponding to differential heat tolerance (Moreno 1989, 
Petruzzi et al. 2006). The lower metabolic rates of unstriped 
morphs may allow them to occupy drier habitats (Fisher-
Reid et al. 2013). As a result, warmer and drier conditions 
are generally expected to select for higher unstriped morphs 
frequencies. However, the relationship between morph fre-
quencies and climate has also been questioned based on 
inconsistent patterns between populations and insignificant 
differences in the response of color morphs to temperature or 
moisture (Petruzzi et al. 2006, Fisher-Reid et al. 2013, Moore 
and Ouellet 2015).

Here, we test for an evolutionary response to climate 
change in P. cinereus by resurveying sites originally sampled 
by Lotter and Scott (1977) in the early 1970s. Lotter and 
Scott (1977) surveyed morph frequencies at 50 locations 
across New England and concluded that the regional clines 
in color morph frequencies indicated adaptation to local tem-
peratures. Our study addresses four research questions: 1) is 
there a relationship between climate and unstriped morph 
frequency in the New England region? If so, 2) has regional 
climate shown sufficient change since the 1970s that we 
would expect to see changes in morph frequencies? If yes, 
then 3) what evolutionary change is predicted by the climate-
morph relationship and the magnitude of observed climate 
change? Finally, 4) do we observe this predicted evolutionary 
response? Given the previously proposed climate-morph link 
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and an average generation time of 2–3 yr (Sayler 1966), we 
hypothesized that changes in selection resulting from climate 
change have caused changes in morph frequencies across 
New England since the 1970s. We expected that models 
based on correlations between climate and morph frequen-
cies would accurately predict morph frequencies both within 
and between time periods (i.e. 1970s and 2015). We spe-
cifically predicted an increase in the proportion of unstriped 
individuals at sites that have become warmer and drier during 
the last 40 yr.

Methods

Salamander surveys

In 2015, we resampled the 50 localities that Lotter and  
Scott (1977) surveyed in 1971–1973. Like Lotter and Scott 
(1977), we searched for salamanders under cover objects 
including fallen logs, bark fragments, and rocks, in wet leaf 
litter, and inside decaying logs, and at each site recorded 
the morph (striped, unstriped, erythristic (fully red), or 

Figure 1. Map of survey locations showing change in proportion of unstriped morphs between 1970 and 2015. Circles are scaled to the 
magnitude of change in unstriped morph proportions (percentage, specified by the number within each circle), with increasing grey tints 
indicating increasing frequency of unstriped morphs and increasing red tints indicating increasing frequency of striped morphs. Inset: photo 
of Plethodon cinereus morphs, unstriped (left) and striped (right). Photo copyright: Binbin Li (used with permission).
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amelanistic) of a minimum of 100 P. cinereus individuals 
(Supplementary material Appendix 1 Table A1). The sites 
selected for the resurvey are detailed in Supplementary mate-
rial Appendix 1 Fig. A1 and Table A2. Because the original 
sampling localities were specified only at the level of towns 
and counties, we selected resampling locations using a com-
bination of town center coordinates (Lotter and Scott 1977) 
and vegetation and topographic descriptions provided in 
Lotter’s (1975) dissertation appendix. We matched specific 
localities (e.g. state parks) in seven of the eight cases in which 
they were provided (the eighth is now a residential block). 
The total area searched during each survey varied among sites 
but was consistent with areas covered by the original surveys 
(1–3 km in diameter; Lotter and Scott 1977).

We divided the resurvey effort into five time periods, 
spanning 14 May to 11 October 2015, and conducted each 
resurvey in the month that most closely matched the original 
survey time (see Supplementary material Appendix 1 Table 
A2 for original and resurvey dates). Intra-annual temporal 
surveys by Lotter (1975) and AEE (unpubl.) indicated no 
significant differences in morph proportions across repeated 
survey efforts during the months when sampling occurred, 
suggesting that morph frequencies observed following the 
same procedures are comparable across years. Additionally, 
we sampled two sites across multiple months and found no 
significant differences in morph proportions (Supplementary 
material Appendix 1 Table A3).

Predictor variables

We developed a set of nine climatic predictor variables rel-
evant to salamander biology and ecology (Supplementary 
material Appendix 1 Table A4). Five of these variables (water 
balance and temperature variables) were further refined for 
the seasonal activity period of terrestrial salamanders across 
the survey area (April–November, determined by literature 
searches; Cochran 1911, Lotter and Scott 1977, Nagel 1977, 
Jaeger 1979, Gergits and Jaeger 1990, Dawley and Crowder 
1995, Leclair et al. 2008). Temperature variables were derived 
from TopoWx daily data (Oyler et al. 2015). Monthly water 
balance data recently recalculated using TopoWx tempera-
ture data were provided by Dobrowski  et  al. (2013). The 
spatial resolution of both data sets is 30 arc-seconds. We 
used the average of each variable for the 10 yr prior to the 
historic and current salamander surveys as the predictor. We 
used a decadal average to more accurately capture average cli-
mates experienced by surveyed populations throughout the 
lifetime of adults (up to 8–9 yr, Leclair et al. 2006). Lotter 
(1975) conducted his surveys from 1971–1973, so we used 
a decadal average of 1962–1971; for current surveys we used 
2005–2014. For water balance metrics, we used data from 
2005–2010 because more recent data were not available. For 
sites that had more than one sampling location (subsites, 
Supplementary material Appendix 1 Table A2), we used 
the mean of the variable values at each location. We did not 
weight subsites based on sample size since that information 
was not available for Lotter’s (1975) data. We found only 

one case where there is a significant difference in the morph 
frequencies across subsites (Supplementary material Appen-
dix 1 Table A3) and exploratory analysis of the 2015 data 
showed no evidence that weighting subsites based on sample 
numbers improved model accuracy or precision (R2 = 0.70, 
RMSE = 37.93).

To account for spatial autocorrelation in sampling, we 
selected a subset of spatial eigenfunctions that significantly 
accounted for spatial structure in morph data for each time 
period. First, we calculated spatial eigenfunctions from 
the current sampling site coordinates using distance-based 
Moran’s eigenvector maps (dbMEMs, Legendre and Leg-
endre 2012). When sites were represented by more than 
one sampling location (Supplementary material Appendix 
1 Table A2), we used the geometric median of the subsite 
coordinates. Second, we built a full multiple linear regression 
model for each time period where the response was either 
the proportion of unstriped morphs at each site during each 
time period or the change in unstriped morph proportions 
across time periods and the predictors were the full set of 
dbMEMs. Finally, we used forward selection (permutation 
p-value of 0.05 for adding a dbMEM variable to the model) 
to retain significant dbMEM predictors, using the full 
model-adjusted R2 as the stopping criterion (Blanchet et al. 
2008). We checked correlations and variance inflation factors 
(VIFs) between significant dbMEM predictors and climate 
variables to ensure correlations and VIFs were less than |0.7| 
and 10, respectively. All predictor variables were calculated 
using R ver. 3.2.3 (R Development Core Team) and the pack-
ages ncdf4 ver. 1.16 (Pierce 2015), raster ver. 2.6-7 (Hijmans 
2015), PCNM ver. 2.1-4 (Legendre et al. 2012), pracma ver. 
1.6.4 (Borchers 2015), and usdm ver. 1.1-18 (Naimi et  al. 
2014).

Models of color morph frequency and climate

To test for a relationship between climate variables and 
unstriped morph frequency for each time period (‘1970’ 
and ‘2015’ hereafter) we used a Markov chain Monte Carlo 
(MCMC) approach to fit Bayesian generalized linear mixed 
models in the MCMCglmm package, ver. 2.22 (Hadfield 
2010). We first created a set of candidate models for each time 
period, consisting of all combinations of predictor variables 
that had correlations and VIFs less than |0.7| and 10, respec-
tively (see Supplementary material Appendix 1 Table A5 for 
candidate model lists). To allow for comparison between the 
two survey periods, we also ran any additional factor combi-
nations that were run in the other time period, regardless of 
variable correlation and VIF. For each candidate model, we 
modeled the proportion of unstriped individuals where our 
response variable was a two-vector count of unstriped indi-
viduals and individuals of all other color morphs (striped, 
erythristic and amelanistic morphs pooled) at each site (see 
Supplementary material Appendix 1 Table A1 for morph 
counts). We used multinomial2 (binomial) as the model 
family, and included three significant dbMEMs as random 
slopes (see Results). We fitted all random effects and residuals 
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using an uninformative inverse Wishart prior with V = 1 and 
nu = 0.002, where V is an estimate of variance and nu is a 
parameter for the degree of belief in V (Hadfield 2010). We 
ran all models for 2  500 000 iterations, with a burn-in of 
500 000 iterations, and a thinning interval of 250 to reduce 
autocorrelation. These parameters provided 8000 samples 
from the posterior distribution for each model parameter. 
For a subset of these models and for all final models, we 
ensured suitable convergence and mixing using Heidelberger 
and Welch (1983), Geweke (1991), and Gelman and Rubin 
(1992) diagnostics, as well as visual inspection of trace plots 
and posterior distributions plots to check that distributions 
were symmetrical.

To select our best climatic model for each time period, we 
used leave-one-out cross-validation to build each model in 
the candidate set with data from 49 out of 50 sites and then 
predicted morph counts for the withheld site. We repeated 
this process 50 times, sequentially leaving out and predicting 
each site. We then calculated log-likelihood of the observed 
unstriped morph count based on morph predictions for each 
site, and summed the log-likelihoods across all sites to rank 
the candidate models based on overall log-likelihood (see 
Supplementary material Appendix 1 Table A5 for full list).

To evaluate the fit and transferability of our best 1970 
and 2015 models, we compared the observed and predicted 
proportion of unstriped individuals under four scenarios: 1) 
the 1970 model predicting unstriped morph proportions 
observed in the 1970s, 2) the 2015 model predicting 2015 
unstriped morph proportions, 3) the 1970 model predict-
ing 2015 unstriped morph proportions based on 2015 cli-
mate predictors (forecast model), and 4) the 2015 model 
predicting 1970s unstriped morph proportions based on 
1970 climate predictors (hindcast model). Sites were over- 
or underpredicted if observed values fell outside the 95% 
highest density posterior intervals (HDPI) of the model 
prediction. We rounded HDPI values to the nearest whole 
number since the MCMC predict function cannot generate 
HDPI values that equal exactly zero (e.g. if the lower HDPI 
is 0.005, it is rounded down to 0). We estimated model pre-
cision using Pearson’s r correlation and relative model accu-
racy using root mean squared error (RMSE) based on point 
estimates of unstriped morph proportions. We also estimate 
the pMCMC statistic, which tests whether the parameter is 
significantly different from zero and is calculated as two times 
the smallest MCMC estimate of the probability that a param-
eter value is either 1)  0 or 2)  0.

Models of changes in morph frequency and climate

Because our predictive models performed poorly across time 
periods, a posteriori, we asked whether change in morph pro-
portions was correlated with changes in any of our climate 
variables. To calculate change in climate variables and color 
morph proportions, we subtracted the 1970s data from the 
2015 data. Because our ‘change’ predictors showed reduced 
correlation structure, we created a new candidate model 
set using a more conservative correlation cut-off of 0.4 (see 

Supplementary material Appendix 1 Table A6 for candidate 
model list). We fitted Bayesian generalized linear mixed mod-
els to these data, where the response variable was the change 
in unstriped morph proportion, assuming a Gaussian distri-
bution. We used one random effect, the variance of the dif-
ference between the proportion of unstriped morphs in the 
1970s and 2015 to account for measurement binomial error 
variance (J. Hadfield pers. comm.). We found no significant 
spatial eigenfunctions for the change models (dbMEMs, see 
results). We fitted these models and checked model conver-
gence as described above. Because we were not using the 
change model for prediction, we ranked models using DIC 
in the package MuMIn ver. 1.15.6 (Barton 2012) instead of 
using cross-validation. Additionally, we tested for significant 
site-specific changes in color morph proportions between the 
two surveys using Fisher’s exact tests, followed by Holm–
Bonferroni sequential correction for multiple tests.

Results

Relationship between color morph frequency and 
climate

We found significant relationships between climate variables 
and unstriped morph proportion in the study area during 
each of the survey periods (Table 1). For each time period, 
our best morph-climate model showed moderate fit and 
accuracy (Table 2, Fig. 2a, c). However, the most important 
predictors differed across time periods (Supplementary mate-
rial Appendix 1 Table A5). The best (highest cross-validation 
score) 1970 model included average freezing degree days 
(FDD), average actual evapotranspiration from April–
November (AET), and average number of days above the 
critical thermal maximum (CTmax). In this model, increases 
in FDD and AET both had a significant positive effect on 
the proportion of unstriped morphs (pMCMC = 0.0001 and 
pMCMC = 0.011 respectively, Table 1), whereas increases 
in CTmax had a marginally significant positive effect on 
unstriped morph proportion (pMCMC = 0.084, Table 1). 
By contrast, the best 2015 model included only average 
maximum temperature from April–November (Tmax0411), 
which had a significant positive effect on unstriped morph 
proportion (pMCMC = 0.0001, Table 1). For both 1970 
and 2015, three spatial eigenfunctions (MEM1, MEM2, and 
MEM6) accounted for a significant spatial signal in the sala-
mander morph data. None of these dbMEMs were correlated 
with our climate predictors above |0.7| and all VIFs were less 
than four. All candidate models had VIFs less than ten, and 
only two were greater than five.

Regional climate change

The four important climate variables included in our best 
models (AET, FDD, CTmax and Tmax0411) changed 
significantly between the 1970s and 2015 (all paired t-tests, 
p  0.0001, Fig. 3). Mean FDD decreased by 229 degree days, 
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mean AET increased by 8.9 mm, mean CTmax increased 
by 1.5 d, and mean Tmax0411 increased by 0.8°C. These 
changes correspond to overall warmer temperatures with an 
increase in days above 32°C, a reduction in days below freez-
ing, and overall drier conditions. We also found a significant 
difference in the overall correlation structure between the 
2015 and 1970s correlation matrices (Mantel test, z = 29.04, 
p = 0.001), with variables becoming increasingly correlated 
over time (Table 3).

Evolutionary predictions based on morph frequency-
climate models

Both the forecast and hindcast models predicted changes 
in morph frequency. However in both cases, the models 
predicted larger changes in unstriped morph proportions 
than were actually observed (Fig. 2b, d). For example, the 
best 1970s model predicted an overall increase in unstriped 
morph frequency of 27.4% across the 50 sites but we 
observed a non-significant increase of only 0.4%, (Pearson’s 
chi-squared = 0.371, p = 0.543). In the forecast model, pre-
dictive accuracy was poor and 82% of sites were incorrectly 
predicted with a strong bias for overprediction of unstriped 
morph proportions (Table 2). By comparison, the hindcast 
model tended to underpredict unstriped morph proportions 
(Table 2). Full observed and predicted data with credible 
intervals are provided in Supplementary material Appendix 
1 Table A7 and Table A8.

Evolutionary change in morph frequency based on 
change in climate

We observed no change in the overall (pooled) proportion of 
unstriped morphs between the two survey periods (z = 0.70, 
p = 0.48, Supplementary material Appendix 1 Table A1). Morph 
frequency changed significantly at only one site, after correcting 
for multiple tests (site 9; p = 0.0004, see Supplementary mate-
rial Appendix 1 Fig. A1 for site locations), where the proportion 
of unstriped individuals decreased by 16%. The proportions 
of a third, rarer erythristic color morph also appeared stable 
between the two surveys (Supplementary material Appendix 1 
Table A1) with only one site experiencing a significant change 
at the 5% level after applying the Holm–Bonferroni correction 
(site 50, p = 0.001; see Supplementary material Appendix 1  
Fig. A1 for site locations). Unsurprisingly given the lack of 
change in morph proportions, none of the climate predictors 
that we examined explained a significant amount of the vari-
ance in the change in unstriped morph proportion over time. 
The best change model contained only an intercept, with all 
nine univariate models within 5 DIC points of the null model 
(Supplementary material Appendix 1 Table A6). The change 
model had no significant spatial eigenfunctions.

Discussion

Despite a significant relationship between climate and 
Plethodon cinereus morph frequencies within each time 
period and an overall warming of the study region, we found 
no evidence for the predicted evolutionary change in morph 
frequencies in response to 40 yr of climate change. Morph 
frequencies appeared stationary across virtually all sites, even 
though the significant changes in climate we detected have 
occurred over a time span encompassing approximately 13 
generations of salamanders, which has been enough time for 
evolution to occur in other species (Kinnison and Hendry 
2001). This outcome could be explained if P. cinereus color 
morph proportions are not directly related to climate, selec-
tion from climate change is weak, or the morph-climate inter-
action is more complex than a simple linear response over 
time. Other factors that may complicate the color morph 
response include 1) interacting selective processes, 2) the 
decoupling of macro- and microscale climate and behavioral 
buffering, and 3) variability in the strength and direction of 
selection over time.

Table 1. MCMCglmm model parameters for the best (highest log-
likelihood value) morph frequency-climate models for each survey 
period (1970 and 2015). Climate variables included in best models 
are FDD (freezing degree days), AET (actual evapotranspiration from 
April to November), CTmax (number of days above critical thermal 
maximum, base 32°C), and Tmax0411 (mean monthly maximum 
temperature from April to November). HDPI represents the 95% 
highest density posterior interval. The pMCMC statistic tests whether 
the parameter is significantly different from zero and is calculated as 
two times the smallest MCMC estimate of either 1) the probability 
that a parameter value is  0 or 2) the probability that a parameter 
value is  0.

Model Variable Posterior mean (95% HDPI) pMCMC

1970 FDD
AET
CTmax

0.0047 (0.0031, 0.0063)
0.1483 (0.0388, 0.2576)
0.2467 (–0.0333, 0.5437)

0.0001
0.0110
0.0842

2015 Tmax0411 1.3150 (0.9119, 1.7443) 0.0001

Table 2. Model performance for each morph–frequency–climate model under four prediction scenarios; 1970 model predicting 1970 morph 
proportion, 2015 model predicting 2015 morph proportion, 1970 model predicting 2015 morph proportion (forecast), and 2015 model 
predicting 1970 morph proportion (hindcast).

Model Precision (Pearson’s r) Accuracy (RMSE)

Overprediction Underprediction

no. sites (%) no. sites (%)

1970→1970 0.74 7.67 13 (26%) 9 (18%)
2015→2015 0.74 7.70 15 (30%) 9 (18%)
1970→2015 (forecast) 0.72 35.09 39 (78%) 2 (4%)
2015→1970 (hindcast) 0.69 9.50 10 (20%) 19 (38%)
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The presence of a morph–climate relationship but lack of 
a predictable temporal response points to the basic challenge 
of determining the ultimate cause of selection over space 
and time (Merilä and Hendry 2014). In other polymorphic 
species, morphs often differentiate along multiple ecologi-
cal axes other than climate (Jones et al. 1977, Hoffman and 
Blouin 2000, Roulin 2004). Previous work on the P. cinereus 
polymorphism has largely identified ways in which unstriped 
individuals are at a competitive disadvantage compared to 
striped individuals (Reiter  et  al. 2014): they have a poorer 
quality diet (Anthony et al. 2008, Stuczka et al. 2016), higher 
levels of stress hormones (Davis and Milanovich 2010), and 
higher levels of predation (Lotter and Scott 1977, Moreno 
1989, Venesky and Anthony 2007). Despite these apparent 
disadvantages, the unstriped morph has persisted over evolu-
tionary time (Fisher-Reid and Wiens 2015), indicating that 
additional factors, such as the proposed ability to exploit 
warmer and drier microclimates (Lotter and Scott 1977, 
Fisher-Reid  et  al. 2013) possibly due to a lower metabolic 
rate (Moreno 1989, Petruzzi et al. 2006), likely convey fit-
ness benefits to unstriped individuals. Frequency-dependent 
selection mediated by visual predators, such as blue jays 
Cyanocitta cristata, has also been implicated as a mechanism 

maintaining this color polymorphism (Fitzpatrick  et  al. 
2009). However, the distribution of known visual predators 
of P. cinereus (e.g. blue jays) does not coincide with morph 
variation in New England, and color morphs also experi-
ence selective pressure from other predators, which may per-
ceive and discriminate between the color morphs differently 
(Venesky and Anthony 2007, Kraemer and Adams 2014). 
More research is needed to evaluate the degree to which 
differences in predation contribute to regional variation in 
morph frequencies.

The lack of temporal response in morph frequencies 
over the past 40 yr may also be related to the decoupling of 
coarse climate predictors (such as ours) from microclimates 
that can vary profoundly over centimeters for small, dis-
persal-limited species like terrestrial salamanders (Heatwole 
1962, Feder 1983, Peterman and Semlitsch 2013, 2014, 
Storlie  et  al. 2014). For example, aspect and elevation can 
have a substantial impact on microclimate conditions, with 
low elevation, south-facing slopes typically experiencing 
warmer temperatures and drier habitats (Fu and Rich 2002), 
which may favor unstriped individuals. Macroscale climate 
also interacts with site-specific changes in land use, such 
as logging and urbanization, which can alter regional and 

Figure 2. Proportion of Plethodon cinereus unstriped morphs observed during field surveys against the number predicted by models under 
four scenarios: (a) 1970 model predicting 1970 morph proportion, (b) 1970 model predicting 2015 morph proportion (forecast), (c) 2015 
model predicting 2015 morph proportion, and (d) 2015 model predicting 1970 morph proportion (hindcast). Error bars show 95% high-
est density posterior intervals. Diagonal line is the 1:1 line that signifies perfect model prediction. Note different y-axis scale in (b).
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microscale forest composition and climate (Jemison 1934). 
In recent decades, anthropogenic disturbances, particularly 
suburbanization, have increased across the northeastern 
United States (Jeon et al. 2014), inducing changes in meso-
scale climate, e.g. urban heat-island effects. Thus, site-level 
variation in forest type, land-use change, and land-use history 
may play important roles in mediating regional effects of 

climate on morph frequencies (Gibbs and Karraker 2006). 
For example, Cosentino  et  al. (2017) demonstrated a rela-
tionship between P. cinereus striped morph frequencies and 
forest cover in warmer regions of the species’ range, but this 
relationship weakens in colder regions. Because up to 75% of 
plethodontid salamander populations shelter underground at 
any one time (Connette and Semlitsch 2015), a combination 
of behavioral plasticity in response to local weather condi-
tions (Muñoz  et  al. 2016) and microclimate heterogeneity 
mediated by mesoscale changes in land use could be sufficient 
to buffer populations from changes in macroscale climate 
observed over the past four decades. Examining if and how 
site-level variation in multiple environmental stressors such 
as land use and climate affect our ability to model and pre-
dict the evolutionary responses of P. cinereus populations is an 
important follow up to this research.

Lastly, surveys spaced over four decades might miss poten-
tially important temporal variability both in climate and 
morph frequency changes. The temporal and spatial variabil-
ity in climate and an increasing frequency of extreme events 
(Buckley et al. 2012, Vasseur et al. 2014) might explain some 
site-specific responses better than simple hypotheses equat-
ing morph frequencies to mean climate variables (Gibbs 
and Karraker 2006, Moore and Ouellet 2015, Nadeau et al. 
2017). This result has been demonstrated in repeated surveys 
of polymorphic land snail species, which show correlations 
between morph frequency changes and climate variation 
across multiple time periods (Cameron and Pokryszko 2008, 
Johnson 2011). These studies suggest that long periods 
between resurvey efforts may conceal temporal variation in 
selective pressures, which act in the opposite direction to the 
overall predicted trend, thus mediating expected climate-
driven responses. The 40-yr temporal resolution of our sur-
veys and the coarse spatial and temporal resolution of the 
climate data mean that we are unable to account for changes 
in the strength and direction of selection on morph frequen-
cies over time (Siepielski et al. 2009).

Even over the relatively short time span of our study, 
we found substantial changes in the correlations among 
climate factors. These changing correlations likely contrib-
uted to the poor predictions and asymmetries in the tem-
poral transferability of climate models in our study and 
others (Dobrowski et al. 2011). Changing correlations among 
predictors make it difficult to understand the actual mecha-
nistic driver of distribution patterns and thereby extrapolate 
to the future (Braunisch et al. 2013). Moreover, shifting cor-
related predictors could buffer or exacerbate climate effects 
such as we might see for integrated and more biologically 
informed measures like actual evapotranspiration. These fac-
tors should be considered in future studies given that many 
future climates are predicted to have no modern analog 
(Williams  et  al. 2007), and current modeling approaches 
often cannot accurately predict distributions when extrapo-
lated into unknown climatic regimes (Araújo  et  al. 2005, 
Fitzpatrick and Hargrove 2009, Veloz et al. 2012).

In our study we encountered a number of limitations 
including 1) variation in weather conditions before and 

Figure 3. Box plots of climate variables: FDD (freezing degree days), 
AET (actual evapotranspiration from April to November), CTmax 
(number of days above critical thermal maximum, base 32°C), 
Tmax0411 (mean monthly maximum temperature from April to 
November) from 50 survey locations for 1970 and 2015 survey 
periods. Horizontal black line represents the median, while the bot-
tom and top of the box represent the 25th and 75th percentiles; 
whiskers extend to the minimum and maximum values.

Table 3. Correlation structure within time periods (1970 and 2015) 
for climate variables included in the best models; AET (actual evapo-
transpiration from April to November), CTmax (number of days 
above critical thermal maximum, base 32°C), FDD (freezing degree 
days), Tmax0411 (mean monthly maximum temperature from April 
to November).

1970

AET CTmax FDD Tmax0411

2015 AET
CTmax
FDD
Tmax0411

–
0.65
0.71
0.87

0.42
–

0.58
0.81

0.55
0.42

–
0.86

0.79
0.69
0.84

–



9

during survey periods and 2) an inability to resurvey identical 
locations for the majority of sites. Weather conditions prior 
to surveys can affect salamander surface activity and detection 
probability and thus may affect population-level inferences 
(Connette and Semlitsch 2015, Muñoz et al. 2016). However, 
two large-scale studies found no significant intrapopula-
tion differences in surface activity between P. cinereus color 
morphs under different weather conditions, suggesting both 
color morphs respond similarly to changes in temperature and 
moisture-related conditions across most of the activity period 
(Anthony et al. 2008, Muñoz et al. 2016). The lack of dif-
ferences between morphs in surface activity is also supported 
by repeated temporal surveys at site 7 (Fenton, Mansfield, 
CT) (Lotter and Scott 1977; AEE unpubl.). Additionally, 
we controlled for the effects of earlier retreat of unstriped 
individuals in the fall (Lotter and Scott 1977, Anthony et al. 
2008) by matching survey and resurvey months as closely as 
possible. Thus, we do not expect that weather and seasonal 
differences in survey effort should have a substantial impact 
on our results. Finally, while we lacked specific information 
regarding the location of the original survey sites, in addi-
tion to our careful matching of site descriptions from Lotter 
(1975), we did not select sites based on elevation or aspect. 
Therefore, we did not systematically bias sites towards specific 
microclimates. Moreover, a significant difference in morph 
proportions between subsites within a site was detected at 
only one of the sites where subsites were sampled in 2015, 
and both morphs were still detected (Supplementary material 
Appendix 1 Table A3). These data indicate that small-scale 
spatial and temporal variation is unlikely to substantially alter 
our regional-scale findings.

Climate has changed substantially in the New England 
USA region over the last 40 yr, yet we did not observe the 
expected evolution of morph frequencies. This result calls 
into question the simple climate–morph link thought to exist 
for this species. In our study, we were fortunate in having 
a detailed historical dataset to test for a predicted adaptive 
response in a species with known genetic and ecological diver-
sity. We demonstrate that, even for well-studied species like 
P. cinereus, we have yet to fully understand the link between 
traits and climate change (Merilä and Hendry 2014, Urban 
2015). As climate continues to change rapidly in the coming 
decades, additional field and experimental research efforts are 
needed to understand these links more fully and predict the 
degree to which evolution can mitigate future impacts.
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Appendix 1 
Fig. A1: Map of survey locations showing site numbers. 
	

	 	



Table A1: Plethodon cinereus color morph count data from the 1970s (Lotter and Scott 1977) 
and 2015 surveys. 
 

  1970s Surveys 2015 Surveys 
Site # Striped Unstriped Erythristic Amelanistic Striped Unstriped Erythristic Amelanistic 

1 81 19 0 0 72 29 0 0 
2 69 31 0 0 81 20 0 0 
3 67 33 0 0 64 37 0 0 
4 67 33 0 0 74 26 0 0 
5 84 16 0 0 65 35 0 0 
6 87 13 0 0 87 13 0 0 
7 76 33 0 0 81 19 0 0 
8 71 29 0 0 81 20 0 0 
9 82 18 0 0 98 2 0 0 

10 89 11 0 0 85 15 0 0 
11 76 24 0 0 72 29 0 0 
12 88 12 0 0 101 2 0 0 
13 86 14 0 0 92 9 0 0 
14 87 13 0 0 81 19 0 0 
15 88 9 2 1 91 7 2 0 
16 80 18 2 0 86 15 0 0 
17 82 18 0 0 75 25 0 0 
18 67 33 0 0 58 42 0 0 
19 93 7 0 0 87 12 0 1 
20 94 6 0 0 99 3 0 0 
21 91 9 0 0 94 5 1 0 
22 95 5 0 0 97 3 0 0 
23 99 1 0 0 100 0 0 0 
24 99 1 0 0 98 2 0 0 
25 100 0 0 0 100 0 0 0 
26 100 0 0 0 127 3 0 0 
27 97 0 3 0 100 0 0 0 
28 100 0 0 0 100 0 0 0 
29 98 0 2 0 101 0 0 0 
30 100 0 0 0 100 0 0 0 
31 100 0 0 0 101 0 0 0 
32 100 0 0 0 101 0 0 0 
33 98 2 0 0 99 3 0 0 
34 100 0 0 0 100 0 0 0 
35 100 0 0 0 99 1 0 0 
36 99 1 0 0 106 0 0 0 
37 100 0 0 0 100 0 0 0 
38 99 0 1 0 98 2 0 0 
39 100 0 0 0 102 0 0 0 
40 100 0 0 0 98 3 0 0 
41 100 0 0 0 95 3 2 0 
42 99 1 0 0 106 0 0 0 
43 100 0 0 0 100 0 0 0 



	
  1970s Surveys 2015 Surveys 

Site # Striped Unstriped Erythristic Amelanistic Striped Unstriped Erythristic Amelanistic 
44 100 0 0 0 100 0 0 0 
45 96 4 0 0 102 7 0 0 
46 87 0 13 0 94 0 10 0 
47 112 0 10 0 101 0 0 0 
48 111 1 25 0 98 0 7 0 
49 92 0 8 0 89 0 11 0 

50* 362 2 52 0 102 0 0 0 
Totals 4848 417 118 1 4638 411 33 1 

% 90.0% 7.7% 2.2% 0.02% 91.2% 8.1% 0.6% 0.02% 
 
* In the 1970s survey, site 50 counts were derived from museum specimens rather than a field 
survey as in 2015.  
 	



Table A2: Plethodon cinereus survey locations (2015) and survey dates for 1970s and 2015. 
 

Site 
# 2015 Site Name Township State Latitude Longitude 

2015 
Survey 
Date 

1970 
Survey 
Date 

1 Leonard Bradley 
Park Wilton CT 41.1827 -73.4311 9 Oct 2015 Oct 1971 

2 Mine Hill Preserve Roxbury CT 41.5596 -73.3375 9 Oct 2015 Oct 1971 

3 Edith Scoville 
Memorial Park Salisbury CT 42.0006 -73.3980 8 Oct 2015 Oct 1971 

4 North Farms Park North Branford CT 41.3152 -72.7656 14 May 
2015 Apr 1973 

5 Sunset Rock Plainville CT 41.6470 -72.8424 10 Oct 
2015 Oct 1971 

6 Devil's Hopyard 
State Park East Haddam CT 41.4743 -72.3400 14-15 May 

2015 Apr 1973 

7 
Univ. Conn. 
Forest; Fenton 
River 

Mansfield CT 41.8238 -72.2356 
12-13 June 
2015; 30 
June 2015 

Jun 1973 

8 Shenipset State 
Forest Somers CT 41.9616 -72.4085 10 Oct 

2015 Oct 1971 

9 Browning Mill 
Pond Exeter RI 41.5608 -71.6832 15 May 

2015 May 1973 

10 Black Hut State 
Management Area Burrillville RI 41.9820 -71.6454 16 May 

2015 May 1973 

11 Mt Holyoke State 
Park Amherst MA 42.3075 -72.4709 16 Sep 

2015 Sep 1971 

12 

Northfield State 
Forest Northfield MA 42.6586 -72.3930 18 May 

2015 May 1973 Northfield Town 
Forest Northfield MA 42.6596 -72.4190 

13 Nickerson State 
Park Brewster MA 41.7690 -70.0311 9-10 June 

2015 Jun 1972 

14 

Myles Standish - 
Middle South Carver MA 41.8897 -70.6321 9-10 June 

2015; 6 
Aug 2015; 
20 Sept 
2015 

Jun 1972 Myles Standish - 
Cranberry Rd South Carver MA 41.8395 -70.6907 

Rocky Gutter 
WMA South Carver MA 41.8527 -70.8428 

15 

Norton - Great 
Woods Norton MA 42.0102 -71.2192 6 Aug 

2015; 19 
Sept 2015 

Jul 1973 Norton - Gilbert 
Hills Norton MA 42.0491 -71.2667 

16 

Whitney & Thayer 
Woods Cohasset MA 42.2340 -70.8240 

16-17 May 
2015 May 1973 Wompatuck State 

Park Hingham MA 42.2169 -70.8619 

Scituate Town 
Forest Scituate MA 42.2077 -70.7814 



Site 
# 2015 Site Name Township State Latitude Longitude 

2015 
Survey 
Date 

1970 
Survey 
Date 

17 Ashland State Park Ashland MA 42.2455 -71.4690 11 Oct 
2015 Oct 1971 

18 

Boxford Wildlife 
Sanctuary Boxford MA 42.6402 -70.9911 5 Aug 

2015 Jul 1971 Wildcat 
Conservation Area Boxford MA 42.6895 -71.0166 

19 

Silver Lake State 
Park Hollis NH 42.7600 -71.5996 4-5 Aug 

2015 Aug 1971 Big Dickerman 
Town Forest Hollis NH 42.7829 -71.6061 

20 Bear Brook State 
Park Allenstown NH 43.1149 -71.3255 2 Aug 

2015 Aug 1971 

21 
Stratham Hill Park Stratham NH 43.0408 -70.8919 3 Aug 

2015 Aug 1973 Stratham Hill - 
Elementary Stratham NH 43.0286 -70.8815 

22 Mt Philo Charlotte VT 44.2779 -73.2138 28-29 Jul 
2015 Jul 1971 

23 Lake Carmi State 
Park Franklin VT 44.9528 -72.8682 29-30 Jul 

2015 Jul 1971 

24 Brighton State Park Brighton VT 44.7941 -71.8504 30 Jul 
2015 Jul 1971 

25 

White Mt. National 
Forest Milan NH 44.5075 -71.3364 31 Jul 

2015 Sep 1971 Mill Brook Trail - 
York Pond Rd  Milan NH 44.4979 -71.3429 

26 Smugglers’ Notch Cambridge VT 44.5382 -72.7909 11 Jun 
2015 Jun 1973 

27 

Groton State 
Forest, Nature Trail Groton VT 44.2857 -72.2646 28 Jul 

2015 Jul 1971 Groton State 
Forest, Owls Head Peacham VT 44.2980 -72.2952 

28 Franconia Notch Lincoln NH 44.1421 -71.6812 11 Jun 
2015 Jun 1973 

29 

Jefferson Notch 1 
(Jeff. Notch Rd) Randolph NH 44.2579 -71.3824 31 Jul 

2015; 1 
Aug 2015 

Aug 1971 Jefferson Notch 2 
(Mt. Clinton Rd) Jefferson NH 44.2300 -71.4065 

30 Green Mt. National 
Forest Rutland VT 43.8483 -72.9003 27 Jul 

2015 Aug 1971 

31 Podunk Wildlife 
Mngt Area Strafford VT 43.8886 -72.3313 11 Jun 

2015 Jun 1973 

32 White Mt. National 
Forest Gorham NH 43.9060 -71.5890 1 Aug 

2015 Jul 1971 

33 Pond Mountain 
B&B, backyard Wells VT 43.4369 -73.1788 25-26 Jul 

2015 Aug 1971 

34 Okemo State Park Ludlow VT 43.4314 -72.7611 27 Jul 
2015 Aug 1971 



Site 
# 2015 Site Name Township State Latitude Longitude 

2015 
Survey 
Date 

1970 
Survey 
Date 

35 Moody Park Claremont NH 43.3577 -72.3662 17 Sep 
2015 Sep 1971 

36 Winslow State 
Park Wilmot NH 43.3897 -71.8660 17 Sep 

2015 Sep 1971 

37 Thompson Town 
Forest Thompson NH 43.4549 -71.3439 1 Aug 

2015 Aug 1971 

38 

Arlington State 
Forest Arlington VT 43.0209 -73.1851 25 Jul 

2015 Aug 1971 Fisher-Scott Pines 
Park Arlington VT 43.1027 -73.1367 

39 Townshend State 
Park Townshend VT 43.0416 -72.6925 26 Jul 

2015 Aug 1971 

40 Vincent State 
Forest Deering NH 43.1157 -71.8082 2 Aug 

2015 Aug 1971 

41 Kennedy Park Lenox MA 42.3830 -73.2787 24 Jul 
2015 Jul 1971 

42 Tob Hill Rd Town 
parcel Westhampton MA 42.3064 -72.7802 16-17 Sept 

2015  Sep 1971 

43 Lawrence Brook 
WMA Royalston MA 42.7118 -72.1865 18 Sep 

2015 Sep 1971 

44 Rutland State Park Rutland MA 42.3690 -71.9880 19 Sep 
2015 Sep 1971 

45 Black Pond YMCA Woodstock CT 41.9719 -72.0737 13 Jun 
2015 Jun 1972 

46 Bear Den 
Geological Park Gilsum NH 43.0253 -72.2680 18 May 

2015 May 1971 

47 

Mt. Greylock - 
Bellows Pipe Adams MA 42.6734 -73.1391 

19 May 
2015 Jul 1971 Mt. Greylock - 

Slopes Adams MA 42.6121 -73.2001 

Mt. Greylock - 
Visitor Center Adams MA 42.5536 -73.2122 

48 Catamount State 
Forest Colrain MA 42.6348 -72.7406 19 May 

2015 Sep 1971 

49 Tunxis State Forest Hartland CT 42.0162 -72.9201 12 Jun 
2015 Jun 1971 

50 Wachuset 
Mountain Princeton MA 42.5079 -71.8926 18 Sep 

2015 

NA 
(Museum 
collection) 

  



Table A3: Polymorphic 2015 sites that had more than one survey location. Striped+Other 
column includes counts of striped, erythristic, and amelanistic morphs. Includes a test of subsite 
morph differences (Chi-squared with simulated p-value). Two sites include a Chi-squared test at 
the same subsite, but in different sampling months. Four other sites with more than one survey 
location were monomorphic for striped morphs so not included in the analysis (Sites 25, 27, 29 
and 47). 
 

Site 
# Site Name Unstriped Striped+Other Chi-

squared 
Simulated 

p-value 

12 Northfield State Forest  0 53 2.162 0.247 
Northfield Town Forest 2 48 

14 
Myles Standish - Cranberry Rd 19 71 

2.606 0.352 Myles Standish - Middle 0 6 
Rocky Gutter WMA 0 4 

15 Norton - Great Woods 2 84 20.618 0.001 
Norton - Gilbert Hills 5 9 

16 
Whitney & Thayer Woods 8 46 

0.866 0.657 Wompatuck State Park 2 19 
Scituate Town Forest 5 21 

19 Silver Lake State Park 10 54 2.212 0.206 
Big Dickerman Town Forest 2 34 

38 Arlington 1 1 42 0.041 1.000 
Arlington 2 1 56 

SITES SAMPLED ACROSS TWO MONTHS: 

14 Myles Standish - Cranberry Rd, June 1 17 3.269 0.112 
Myles Standish - Cranberry Rd, September 18 54 

15 Norton - Great Woods, August 1 9 2.934 0.217 
Norton - Great Woods, September 1 75 

 
  



Table A4: Predictor variables averaged over 1962–1971 for Lotter and Scotts 1970s survey and 
2005–2014 for our 2015 resurvey. 

Predictor Description Months 
Included 

Actual evapotranspiration 
(AET) 

The supply component of the climatic water 
balance; accounts for the concurrent 
availability of water and energy. 
 

April-
November* 

Water deficit (DEF) The unmet demand component of the climatic 
water balance; accounts for the concurrent 
availability of water and energy. 

April-
November* 

Mean monthly mean 
temperature (Tmean0411) 

Average monthly mean temperature; 
calculated from daily mean temperatures. 

April-
November 

Mean monthly maximum 
temperature (Tmax0411) 

Average monthly maximum temperature; 
calculated from daily maximum temperatures. 

April-
November 

Mean monthly minimum 
temperature (Tmin0411) 

Average monthly minimum temperature; 
calculated from daily minimum temperatures. 

April-
November 

Growing degree days, 0°C 
base (GDD) 

Average annual sum of degrees above 0°C; 
calculated from daily mean temperatures. 

January-
December 

Freezing degree days 
(FDD) 

Average annual sum of degrees below 0°C; 
calculated from daily minimum temperatures. 

January-
December 

Frost free days (FrFD) Number of days between the last 0°C day in 
the spring and the first 0°C day in the fall; 
calculated from daily minimum temperatures. 
 

January-
December 

Number of days above 
critical thermal max 
(CTmax) 

Number of days where maximum temperature 
is above Plethodon cinereus critical thermal 
max (> 32°C)†. 

January-
December 

* Current water balance data are a six-year average of 2005–2010.  
† Spotila JR (1972) Role of temperature and water in the ecology of lungless 
salamanders. Ecological Monographs, 42, 95-125. 
 
 
	 	



Table A5: Candidate model sets ordered by log-likelihood values (lnL, best models at top) for 
1970 and 2015. Grey shading indicates candidate models that included variables correlated 
above |0.7|. These were included to allow all models to be compared between time periods. See 
Supplementary materials Appendix 1, Table A4 for the full name of each abbreviated climate 
variable.  
 
Model 1970 lnL  Model 2015 lnL 
AET + CTmax + FDD -240.25  Tmax0411 -236.69 
AET + FDD -252.07  CTmax + Tmean0411 -237.40 
AET + Tmean0411 -253.29  Tmean0411 -238.62 
AET + GDD -257.45  CTmax + Tmax0411 -246.36 
AET + CTmax + Tmean0411 -261.71  CTmax + GDD -246.44 
AET + CTmax + GDD -263.15  AET + CTmax + Tmean0411 -253.58 
Tmean0411 -266.92  AET + Tmean0411 -254.32 
Tmax0411 -268.47  GDD -254.70 
CTmax + Tmean0411 -272.49  CTmax + FDD -261.83 
CTmax + Tmax0411 -272.69  AET + CTmax + GDD -262.05 
AET + DEF -278.05  AET + CTmax + FDD -265.99 
GDD -279.49  AET + CTmax + DEF -266.53 
CTmax + GDD -282.57  AET + GDD -267.59 
AET + CTmax + Tmin0411 -284.25  CTmax + Tmin0411 -271.77 
AET + CTmax + DEF -285.97  AET + DEF -276.18 
AET + CTmax + FrFD -292.77  CTmax + DEF -276.64 
CTmax + FDD -303.61  AET + CTmax + Tmin0411 -279.09 
AET + Tmin0411 -305.72  AET + CTmax + FrFD -285.36 
AET + FrFD -320.16  AET + FDD -288.03 
FDD -325.99  CTmax + FrFD -301.88 
CTmax + Tmin0411 -363.72  AET + Tmin0411 -308.48 
AET -389.87  FDD -308.68 
AET + CTmax -391.75  AET + FrFD -316.54 
DEF -395.62  DEF -320.47 
CTmax + FrFD -404.23  AET + CTmax -332.65 
Tmin0411 -407.08  Tmin0411 -333.50 
CTmax + DEF -413.25  AET -363.00 
FrFD -462.68  CTmax -366.83 
CTmax -485.72  FrFD -415.48 
	
	 	



Table A6: Candidate change models ordered by change in DIC values. See Supplementary 
materials Appendix 1, Table A4 for the full name of each abbreviated climate variable.  
 
Model DIC delta DIC weight 
null model -288.2 0.0 0.3 
CTmax -285.4 2.8 0.1 
Tmean0411 -285.2 3.0 0.1 
GDD -285.2 3.0 0.1 
AET -285.1 3.2 0.1 
Tmax0411 -284.9 3.3 0.1 
Tmin0411 -284.9 3.3 0.1 
DEF -284.7 3.5 0.1 
FDD -284.5 3.7 0.0 
FrFD -283.7 4.5 0.0 
DEF + CTmax -282.3 6.0 0.0 
CTmax + Tmax0411 -282.0 6.2 0.0 
AET +Tmean0411 -281.9 6.3 0.0 
AET + Tmax0411 -281.8 6.4 0.0 
DEF + GDD -281.7 6.5 0.0 
AET + Tmin0411 -281.7 6.6 0.0 
DEF + Tmean0411 -281.6 6.6 0.0 
Tmax0411 + Tmin0411 -281.6 6.6 0.0 
FDD + Tmean0411 -281.6 6.7 0.0 
CTmax + FDD -281.4 6.8 0.0 
DEF + Tmin0411 -281.4 6.9 0.0 
DEF + FDD -281.3 6.9 0.0 
FDD + Tmax0411 -281.2 7.0 0.0 
FDD + Tmin0411 -281.1 7.1 0.0 
FrFD + GDD -280.7 7.6 0.0 
CTmax + rFFD -280.6 7.6 0.0 
FrFD + Tmean0411 -280.5 7.7 0.0 
AET + FrFD -280.4 7.9 0.0 
FrFD + Tmin0411 -280.3 8.0 0.0 
FDD + FrFD -279.9 8.3 0.0 
DEF + CTmax + FDD -278.6 9.6 0.0 
AET + Tmax0411 + Tmin0411 -278.3 9.9 0.0 
DEF + FDD + Tmin0411 -278.1 10.1 0.0 
DEF + FDD + Tmean0411 -278.0 10.3 0.0 
CTmax + FDD + Tmax0411 -277.9 10.3 0.0 
AET + FrFD + Tmean0411 -277.1 11.1 0.0 
AET + FrFD + Tmin0411 -276.9 11.3 0.0 
FDD + FrFD + Tmean0411 -276.9 11.4 0.0 
CTmax + FDD + FrFD -276.5 11.7 0.0 
FDD + FrFD + Tmin0411 -276.3 11.9 0.0 
global model -109.2 179.1 0.0 



Table A7: Observed and predicted unstriped morph frequencies (unstriped morph percent with 
95% credible intervals) for the 1970s survey. 
 

Site Observed: 1970 Predicted: 1970 model 
predicting 1970 data 

Predicted: 2015 model 
predicting 1970 data 

1 19 36 (22-–48) 17 (10–25) 
2 31 28 (17–40) 13 (8–19) 
3 33 15 (6–25) 6 (4–10) 
4 33 27 (16–40) 12 (7–17) 
5 16 23 (13–34) 9 (6–14) 
6 13 26 (14–39) 7 (4–10) 
7 30 15 (9–22) 8 (5–12) 
8 29 8 (4–13) 4 (2–6) 
9 18 26 (13–41) 4 (2–7) 
10 11 16 (11–23) 8 (5–12) 
11 24 10 (5–16) 8 (5–12) 
12 12 3 (1–5) 2 (1–3) 
13 14 22 (4–44) 1 (0–2) 
14 13 11 (3–22) 4 (2–7) 
15 9 21 (13–29) 10 (6–14) 
16 18 30 (17–44) 7 (5–11) 
17 18 27 (14–41) 12 (7–17) 
18 33 16 (6–29) 7 (4–10) 
19 7 11 (3–21) 9 (5–13) 
20 6 7 (4–11) 3 (2–6) 
21 9 12 (4–22) 5 (3–7) 
22 5 2 (0–3) 1 (0–3) 
23 1 0 (0–0) 0 (0–1) 
24 1 0 (0–0) 0 (0–0) 
25 0 0 (0–0) 0 (0–0) 
26 0 0 (0–0) 0 (0–0) 
27 0 0 (0–0) 0 (0–0) 
28 0 0 (0–0) 0 (0–0) 
29 0 0 (0–0) 0 (0–0) 
30 0 0 (0–1) 0 (0–1) 
31 0 0 (0–0) 0 (0–0) 
32 0 0 (0–1) 0 (0–1) 
33 2 2 (0–3) 1 (0–2) 
34 0 0 (0–1) 0 (0–1) 
35 0 2 (1–3) 3 (2–5) 
36 1 1 (0–2) 0 (0–0) 
37 0 2 (1–4) 2 (1–3) 
38 0 4 (2–8) 4 (2–7) 
39 0 9 (2–17) 7 (4–10) 
40 0 1 (0–3) 1 (0–2) 



Site Observed: 1970 Predicted: 1970 model 
predicting 1970 data 

Predicted: 2015 model 
predicting 1970 data 

41 0 2 (1–4) 2 (1–3) 
42 1 4 (2–7) 3 (1–5) 
43 0 2 (1–3) 2 (1–4) 
44 0 6 (3–8) 3 (2–5) 
45 4 11 (6–18) 3 (2–6) 
46 0 1 (0–2) 1 (0–2) 
47 0 0 (0–1) 0 (0–1) 
48 1 5 (2–8) 5 (3–8) 
49 0 6 (2–10) 2 (1–3) 
50 0 3 (1–5) 3 (1–5) 
 
  



Table A8: Observed and predicted unstriped morph frequencies (unstriped morph percent with 
95% credible intervals) for the 2015 survey. 
 

Site Observed: 2015 Predicted: 2015 model 
predicting 2015 data 

Predicted: 1970 model 
predicting 2015 data 

1 29 34 (20–48) 88 (70–99) 
2 20 29 (17–41) 82 (58–99) 
3 37 14 (9–21) 62 (32–88) 
4 26 26 (15–36) 78 (59–95) 
5 35 21 (12–30) 66 (43–88) 
6 13 15 (9–22) 70 (45–92) 
7 19 16 (10–23) 54 (33–76) 
8 20 8 (5–12) 41 (20–62) 
9 2 12 (7–17) 70 (45–92) 
10 15 17 (10–25) 65 (42–88) 
11 29 16 (10–23) 56 (29–83) 
12 2 3 (2–5) 24 (8–42) 
13 9 4 (2–6) 58 (34–82) 
14 19 12 (7–17) 57 (37–75) 
15 7 23 (14–33) 78 (55–98) 
16 15 17 (10–24) 85 (66–99) 
17 25 24 (14–34) 82 (55–100) 
18 42 14 (9–20) 71 (46–94) 
19 12 16 (10–22) 56 (24–87) 
20 3 7 (4–10) 41 (19–62) 
21 5 9 (5–13) 61 (33–87) 
22 3 4 (2–7) 19 (5–36) 
23 0 2 (1–3) 3 (1–6) 
24 2 0 (0–1) 0 (0–1) 
25 0 0 (0–1) 0 (0–0) 
26 2 0 (0–0) 0 (0–1) 
27 0 0 (0–1) 1 (0–1) 
28 0 0 (0–0) 1 (0–1) 
29 0 0 (0–0) 0 (0–0) 
30 0 1 (0–2) 3 (1–5) 
31 0 0 (0–1) 1 (0–2) 
32 0 1 (0–2) 3 (1–6) 
33 3 2 (1–3) 18 (2–39) 
34 0 1 (0–2) 3 (1–7) 
35 1 7 (4–10) 21 (7–38) 
36 0 0 (0–1) 3 (1–6) 
37 0 3 (1–5) 18 (8–30) 
38 2 9 (5–13) 25 (10–42) 
39 0 12 (7–17) 43 (16–73) 
40 3 2 (1–4) 8 (4–11) 



Site Observed: 2015 Predicted: 2015 model 
predicting 2015 data 

Predicted: 1970 model 
predicting 2015 data 

41 3 4 (2–6) 16 (7–27) 
42 0 7 (4–11) 38 (16–59) 
43 0 4 (2–7) 19 (8–29) 
44 0 6 (4–10) 36 (19–56) 
45 6 7 (4–11) 43 (22–65) 
46 0 2 (1–4) 7 (3–11) 
47 0 1 (0–2) 3 (1–4) 
48 0 11 (7–15) 44 (19–68) 
49 0 5 (3–7) 37 (14–60) 
50 0 5 (3–8) 25 (14–37) 
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